x^3+2x^2+x-xy^2
phân tích đa thức trên thành nhân tử
a, x-3✔(x) +2
phân tích đa thức thành nhân tử
\(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
\(x-3\sqrt{x}+2=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)\)
16x2 - ( x + 1)2
Phân tích đa thức thành nhân tử
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
2x^3+16y^3
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
4(x-1)^2-9x^2
Phân tích đa thức trên thành nhân tử
GIÚP VỚI Ạ!
\(=\left[2\left(x-1\right)-3x\right]\left[2\left(x-1\right)+3x\right]\\ =\left(2x-2-3x\right)\left(2x-2+3x\right)\\ =\left(-2-x\right)\left(5x-2\right)\\ =\left(x+2\right)\left(2-5x\right)\)
\(4\left(x-1\right)^2-9x^2=\left(2x-2\right)^2-\left(3x\right)^2=\left(2x-2-3x\right)\left(2x-2+3x\right)=\left(-x-2\right)\left(5x-2\right)=-\left(x+2\right)\left(5x-2\right)=\left(x+2\right)\left(2-5x\right)\)
a) x+y+x^2-y^2
b) x^2 - 2y - 2y^2 + x^2y
c) X^3 - X^2 + x+1
D) X^3 + 3x^2 + 3x +1 - y^2
Phân tích đa thức thành nhân tử ạ
a) \(=\left(x+y\right)+\left(x+y\right)\left(x-y\right)=\left(x+y\right)\left(1+x-y\right)\)
b) \(=x^2\left(y+1\right)-2y\left(y+1\right)=\left(y+1\right)\left(x^2-2y\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x^2 - 2x+xy-2
phân tích thành nhâ n tử
a) (x^2-1)^2-x(x^2-1)-2x^2
b) (x^2+1)^2+3x(x^2+1)+2x^2
Phân tích đa thức thành nhân tử
Giúp mình với mình đang cần gấp
a: =(x^2-1)^2-2x(x^2-1)+x(x^2-1)-2x^2
=(x^2-1)(x^2-1-2x)+x(x^2-1-2x)
=(x^2-2x-1)(x^2+x-1)
b: \(=\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2+x+1\right)\)
Phân tích đa thức sau x^3-2x^2+xy^2 thành nhân tử
\(x^3-2x^2+xy^2=x\left(x^2-2x+y^2\right)\)