Những câu hỏi liên quan
MV
Xem chi tiết
NT
27 tháng 7 2021 lúc 20:36

b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)

\(=2-\sqrt{3}+\sqrt{3}-1-6\cdot\dfrac{4}{\sqrt{3}}\)

\(=1-8\sqrt{3}\)

Bình luận (0)
HN
Xem chi tiết
NT
16 tháng 8 2021 lúc 13:54

Ta có: \(\tan^240^0\cdot\sin^250^0-3+\left(1-\sin40^0\right)\left(1+\sin40^0\right)\)

\(=\sin^240^0-3+1-\sin^240^0\)

=-2

Bình luận (0)
AL
Xem chi tiết
NT
18 tháng 10 2021 lúc 21:48

a: \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)

\(=-5\sqrt{5}\)

b: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)

\(=2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\)

\(=-8\sqrt{3}+1\)

Bình luận (0)
NA
Xem chi tiết
HL
26 tháng 9 2017 lúc 13:39

a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)

b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)

= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)

= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)

= \(1+1=2\)

a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.

vd: \(sin30^o=cos70^o\)

b) Gợi ý: \(sin^2+cos^2=1\)

Bình luận (0)
SK
Xem chi tiết
BV
10 tháng 5 2017 lúc 10:21

a) \(sin20^o+2sin40^o-sin100^o=sin20^o-sin100^o+2sin40^o\)
\(=2cos60^osin\left(-40^o\right)+2sin40^o\)\(=-2cos60^osin40^o+2sin40^o\)
\(=2sin40^o\left(-cos60^o+1\right)=2sin40^o.\left(-\dfrac{1}{2}+1\right)=sin40^o\)(đpcm).

Bình luận (0)
BV
10 tháng 5 2017 lúc 10:28

b) \(\dfrac{sin\left(45^o+\alpha\right)-cos\left(45^o+\alpha\right)}{sin\left(45^o+\alpha\right)+cos\left(45^o+\alpha\right)}\)
\(=\dfrac{sin\left(45^o+\alpha\right)-sin\left(45^o-\alpha\right)}{sin\left(45^o+\alpha\right)+sin\left(45^o-\alpha\right)}=\dfrac{2cos45^o.sin\alpha}{2sin45^o.cos\alpha}\)
\(=tan\alpha\) (Đpcm).

Bình luận (0)
BV
10 tháng 5 2017 lúc 11:01

d) \(sin200^osin310^o+cos340^ocos50^o\)
\(=sin20^o.sin50^o+cos20^ocos50^o\)
\(=cos\left(50^o-20^o\right)=cos30^o\).

Bình luận (0)
JE
Xem chi tiết
NL
15 tháng 7 2020 lúc 17:27

a/

\(\Leftrightarrow\left[{}\begin{matrix}cos2x+1=0\\cos2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow2x=\pi+k2\pi\)

\(\Rightarrow x=\frac{\pi}{2}+k\pi\)

b/

\(\Leftrightarrow cos5x=sin40^0\)

\(\Leftrightarrow cos5x=cos50^0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=50^0+k360^0\\5x=-50^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=10^0+k72^0\\x=-10^0+k72^0\end{matrix}\right.\)

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:30

c/

\(\Leftrightarrow sin3x=-cosx\)

\(\Leftrightarrow sin3x=sin\left(x-\frac{\pi}{2}\right)\)

\(\Rightarrow\left[{}\begin{matrix}3x=x-\frac{\pi}{2}+k2\pi\\3x=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow2sinx.cosx+\sqrt{3}sinx=0\)

\(\Leftrightarrow sinx\left(2cosx+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{\sqrt{3}}{2}=cos\left(\frac{5\pi}{6}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
HH
Xem chi tiết
NT
10 tháng 8 2023 lúc 19:49

\(=tan^240^0\cdot cos^240^0-3+1-sin^240^0\)

\(=sin^240^0-sin^240^0-2\)

=-2

Bình luận (0)
H24
Xem chi tiết
NT
19 tháng 10 2023 lúc 9:34

loading...  

Bình luận (0)
NM
Xem chi tiết