Tính
\(tan^240^o.sin^250^o-3+\left(1-sin40^o\right).\left(1+sin40^o\right)\)
Tính giá trị biểu thức:
b) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c) \(tan^240^o.sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
b) Ta có: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-6\cdot\dfrac{4}{\sqrt{3}}\)
\(=1-8\sqrt{3}\)
\(\tan^240.sin^250-3+\left(1-sin40\right)\left(1+sin40\right)\)
Ta có: \(\tan^240^0\cdot\sin^250^0-3+\left(1-\sin40^0\right)\left(1+\sin40^0\right)\)
\(=\sin^240^0-3+1-\sin^240^0\)
=-2
Tính giá trị biểu thức
a,\(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
b,\(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
c,\(\tan^2\)\(40^o\)*\(sin^250^o-3+\left(1-sin40^o\right)\left(1+sin40^o\right)\)
a: \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)
\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}\)
\(=-5\sqrt{5}\)
b: \(\sqrt{\left(2-\sqrt{3}\right)^2}+\dfrac{2}{\sqrt{3}+1}-6\sqrt{\dfrac{16}{3}}\)
\(=2-\sqrt{3}+\sqrt{3}-1-8\sqrt{3}\)
\(=-8\sqrt{3}+1\)
1. Rút gọn các biểu thức:
a) \(\sin40^o-\cos50^o\)
b) \(\sin^230^o+\sin^240^o+\sin^250^o+\sin^260^o\)
a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)
b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)
= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)
= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)
= \(1+1=2\)
a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.
vd: \(sin30^o=cos70^o\)
b) Gợi ý: \(sin^2+cos^2=1\)
Không dùng bảng số và máy tính, chứng minh rằng :
a) \(\sin20^0+2\sin40^0-\sin100^0=\sin40^0\)
b) \(\dfrac{\sin\left(45^0+\alpha\right)-\cos\left(45^0+\alpha\right)}{\sin\left(45^0+\alpha\right)+\cos\left(45^0+\alpha\right)}=\tan\alpha\)
c) \(\dfrac{3\cot^215^0-1}{3-\cot^215^0}=-\cot15^0\)
d) \(\sin200^0\sin310^0+\cos340^0\cos50^0=\dfrac{\sqrt{3}}{2}\)
a) \(sin20^o+2sin40^o-sin100^o=sin20^o-sin100^o+2sin40^o\)
\(=2cos60^osin\left(-40^o\right)+2sin40^o\)\(=-2cos60^osin40^o+2sin40^o\)
\(=2sin40^o\left(-cos60^o+1\right)=2sin40^o.\left(-\dfrac{1}{2}+1\right)=sin40^o\)(đpcm).
b) \(\dfrac{sin\left(45^o+\alpha\right)-cos\left(45^o+\alpha\right)}{sin\left(45^o+\alpha\right)+cos\left(45^o+\alpha\right)}\)
\(=\dfrac{sin\left(45^o+\alpha\right)-sin\left(45^o-\alpha\right)}{sin\left(45^o+\alpha\right)+sin\left(45^o-\alpha\right)}=\dfrac{2cos45^o.sin\alpha}{2sin45^o.cos\alpha}\)
\(=tan\alpha\) (Đpcm).
d) \(sin200^osin310^o+cos340^ocos50^o\)
\(=sin20^o.sin50^o+cos20^ocos50^o\)
\(=cos\left(50^o-20^o\right)=cos30^o\).
Giải các pt
a) \(\left(cos2x+1\right)\left(cos2x+2\right)=0\)
b) \(cos5x-sin40^o=0\)
c) \(sin3x+cosx=0\)
d) \(sin2x+\sqrt{3}sinx=0\)
a/
\(\Leftrightarrow\left[{}\begin{matrix}cos2x+1=0\\cos2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=-2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow2x=\pi+k2\pi\)
\(\Rightarrow x=\frac{\pi}{2}+k\pi\)
b/
\(\Leftrightarrow cos5x=sin40^0\)
\(\Leftrightarrow cos5x=cos50^0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=50^0+k360^0\\5x=-50^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10^0+k72^0\\x=-10^0+k72^0\end{matrix}\right.\)
c/
\(\Leftrightarrow sin3x=-cosx\)
\(\Leftrightarrow sin3x=sin\left(x-\frac{\pi}{2}\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x-\frac{\pi}{2}+k2\pi\\3x=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{3\pi}{8}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+\sqrt{3}sinx=0\)
\(\Leftrightarrow sinx\left(2cosx+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=-\frac{\sqrt{3}}{2}=cos\left(\frac{5\pi}{6}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Thực hiện phép tính: tan²40°.sin²50°-3+(1- sin40°)(1+sin40°)
\(=tan^240^0\cdot cos^240^0-3+1-sin^240^0\)
\(=sin^240^0-sin^240^0-2\)
=-2
Giá trị của \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)?
Rút gọn \(4\sqrt{x}\left(x>0\right)\)
Tìm x \(\sqrt[3]{x+1}+5=2\)
Tính:
\(C=\frac{\tan^2\alpha\left(1+\cos^3\alpha\right)+\cot^2\alpha\left(1+\sin^3\alpha\right)}{\left(\sin^3\alpha+\cos^3\alpha\right)\left(1+\sin^3\alpha+\cos\alpha\right)}\)
Biết \(\tan\alpha=\tan35^o.\tan36^o.\tan37^o.....\tan57^o\)