Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NL
10 tháng 4 2022 lúc 11:13

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

Bình luận (4)
NL
10 tháng 4 2022 lúc 11:13

undefined

Bình luận (0)
TN
Xem chi tiết
NL
22 tháng 4 2019 lúc 12:34

\(z\ne4i\Rightarrow\left\{{}\begin{matrix}a\ne0\\b\ne4\end{matrix}\right.\)

\(\frac{z-4}{z-4i}=\frac{a-4+bi}{a+\left(b-4\right)i}=\frac{\left(a-4+bi\right)\left(a-\left(b-4\right)i\right)}{a^2-\left(b-4\right)^2}=\frac{a\left(a-4\right)+b\left(b-4\right)-\left[\left(a-4\right)\left(b-4\right)-ab\right]i}{a^2-\left(b-4\right)^2}\)

Số phức trên là thuần ảo khi và chỉ khi \(\left\{{}\begin{matrix}a\left(a-4\right)+b\left(b-4\right)=0\\\left(a-4\right)\left(b-4\right)-ab\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-2\right)^2=8\\a+b-4\ne0\end{matrix}\right.\)

\(\Rightarrow\) Tập hợp \(z\) là điểm \(M\left(a;b\right)\) thuộc đường tròn (C) tâm \(I\left(2;2\right)\) bán kính \(R=2\sqrt{2}\) và khác 2 điểm \(A\left(0;4\right)\)\(B\left(4;0\right)\)

\(P=\left|z\right|^2=a^2+b^2=OM^2\)

\(P_{max}\) khi M trùng giao điểm của đường thẳng OI và đường tròn (giao điểm năm khác phía O so với I)

Phương trình OI: \(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

Giao điểm của OI và (C): \(2\left(x-2\right)^2=8\Rightarrow\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(\Rightarrow M_1\left(0;0\right)\) (loại); \(M_2\left(4;4\right)\) \(\Rightarrow a=b=4\)

Không có kết quả?!

Bình luận (2)
PB
Xem chi tiết
CT
22 tháng 4 2017 lúc 9:35

Đáp án C

          - Nhìn vào hình vẽ ta có phần thực a bị giới hạn -2 < a < 2,  b ∈ ℝ

Chú ý: Cho số phức z = a + bi, điểm M(a;b) trong hệ trục tọa độ vuông góc của mặt phẳng được gọi là điểm biểu diễn số phức z.

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 10 2018 lúc 14:00

Đáp án A.

Có z . z ' = a a ' − b b ' + a b ' + a ' b i .  

Vậy phần ảo là:  a b ' + b a ' i .

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 9 2019 lúc 9:40

Đáp án A.

 .

Vậy phần ảo là (ab'+ba')i.

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 7 2019 lúc 3:57

Đáp án D

HD: Ta có

Suy ra ∆OAB vuông cân tại A

 

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2018 lúc 8:19

Đấp án C.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 4 2017 lúc 10:48

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 10 2017 lúc 8:04

Đáp án D

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 4 2019 lúc 18:20

Chọn C

Bình luận (0)