Bài 1: Số phức

TN

Giúp e bài này với. Cho số phức z=a+bi sao cho (z-4)/(z-4i) là số thuần ảo. Nếu số phức có môdun lớn nhất thì biểu thức P= a2 + b2 bằng

A.4 B.8 C.24 D.20

NL
22 tháng 4 2019 lúc 12:34

\(z\ne4i\Rightarrow\left\{{}\begin{matrix}a\ne0\\b\ne4\end{matrix}\right.\)

\(\frac{z-4}{z-4i}=\frac{a-4+bi}{a+\left(b-4\right)i}=\frac{\left(a-4+bi\right)\left(a-\left(b-4\right)i\right)}{a^2-\left(b-4\right)^2}=\frac{a\left(a-4\right)+b\left(b-4\right)-\left[\left(a-4\right)\left(b-4\right)-ab\right]i}{a^2-\left(b-4\right)^2}\)

Số phức trên là thuần ảo khi và chỉ khi \(\left\{{}\begin{matrix}a\left(a-4\right)+b\left(b-4\right)=0\\\left(a-4\right)\left(b-4\right)-ab\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-2\right)^2=8\\a+b-4\ne0\end{matrix}\right.\)

\(\Rightarrow\) Tập hợp \(z\) là điểm \(M\left(a;b\right)\) thuộc đường tròn (C) tâm \(I\left(2;2\right)\) bán kính \(R=2\sqrt{2}\) và khác 2 điểm \(A\left(0;4\right)\)\(B\left(4;0\right)\)

\(P=\left|z\right|^2=a^2+b^2=OM^2\)

\(P_{max}\) khi M trùng giao điểm của đường thẳng OI và đường tròn (giao điểm năm khác phía O so với I)

Phương trình OI: \(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)

Giao điểm của OI và (C): \(2\left(x-2\right)^2=8\Rightarrow\left(x-2\right)^2=4\Rightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(\Rightarrow M_1\left(0;0\right)\) (loại); \(M_2\left(4;4\right)\) \(\Rightarrow a=b=4\)

Không có kết quả?!

Bình luận (2)

Các câu hỏi tương tự
KD
Xem chi tiết
KD
Xem chi tiết
NC
Xem chi tiết
KD
Xem chi tiết
LA
Xem chi tiết
KN
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
PP
Xem chi tiết