Những câu hỏi liên quan
LH
Xem chi tiết
NL
Xem chi tiết
LV
Xem chi tiết
NL
23 tháng 8 2021 lúc 23:38

\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)

\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)

Tương tự và cộng lại:

\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)

Bình luận (0)
PA
Xem chi tiết
AH
4 tháng 7 2021 lúc 23:12

1. Không có dấu "=" em nhé.

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:

$a< b+c\Rightarrow a^2< ab+ac$

$b< a+c\Rightarrow b^2< ba+bc$

$c< a+b\Rightarrow c^2< ca+cb$

$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$ 

Ta có đpcm. 

Bình luận (2)
AH
4 tháng 7 2021 lúc 23:13

2.

$(x-1)(x-2)(x-3)(x-4)$

$=(x-1)(x-4)(x-2)(x-3)$

$=(x^2-5x+4)(x^2-5x+6)$

$=(x^2-5x+4)(x^2-5x+4+2)$

$=(x^2-5x+4)^2+2(x^2-5x+4)$

$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$

$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$

Vậy ta có đpcm.

Bình luận (0)
AH
4 tháng 7 2021 lúc 23:16

3.

Áp dụng BĐT Cô-si:

$a^4+b^4\geq 2a^2b^2$

$b^4+c^4\geq 2b^2c^2$

$c^4+a^4\geq 2c^2a^2$

Cộng theo vế và thu gọn thì:

$a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2(*)$
Tiếp tục áp dụng BĐT Cô-si:

$a^2b^2+b^2c^2\geq 2|ab^2c|\geq 2ab^2c$

$b^2c^2+c^2a^2\geq 2abc^2$

$a^2b^2+c^2a^2\geq 2a^2bc$

Cộng theo vế và thu gọn:

$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)(**)$

Từ $(*); (**)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$

Dấu "=" xảy ra khi $a=b=c$

Bình luận (0)
NA
Xem chi tiết
CH
Xem chi tiết
TK
Xem chi tiết

Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)

\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)

Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
DH
Xem chi tiết