Cho hai đường thẳng: d 1 : m x – 2 ( 3 n + 2 ) y = 6 và d 2 : ( 3 m – 1 ) x + 2 n y = 56 . Tìm tích m.n để hai đường thẳng cắt nhau tại điểm I (−2; 3).
A. 0
B. 1
C. 2
D. −2
Cho các đường thẳng d1: x+y+3=0 , d2: x-y-4=0 , d3: x-2y=0. Tìm tọa độ điểm M nằm trên đường thẳng d3 sao cho khoảng cách từ M đến đường thẳng d1 bằng hai lần khoảng cách từ M đến đường thẳng d2
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
Trong mặt phẳng Oxy, cho 2 đường thẳng (d): y= (m-3)x + n + 5 và (d'): y=-2x + 1. Tìm giá trị của m,n để hai đường thẳng (d) và (d') cắt nhau tại một điểm trên trục tung
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
Để hai đường cắt nhau trên trục tung thì n+5=1 và m-3<>-2
=>n=-4 và m<>1
5. Tìm điều kiện của tham số để đồ thị hàm số đi qua một điểm A ( x0; y0) cho trước. y = (2 - m )x + m,Thì đồ thị hàm số đi qua A(-1; 6) 6. Tìm điều kiện của m để:Cho( d) :y = (m − 2)x + n (m ≠ 2). a) Đường thẳng (d) cắt đường thẳng (d1): −2y + x − 5 = 0 b) Đường thẳng (d) song song với đường thẳng(d2): 3x + y = 1 c) Đường thẳng (d) trùng với đường thẳng (d3): y = 2x + 3 7. Cho hàm số y = ( m+2)x + n-1 ( m -2) có đồ thị là đừờng thẳng (d) Cho n= 6,Gọi giao điểm của (d) với hai trục toạ độ là A, B.Tìm m để tam giác ABC có diện tích bằng 6
Bài 2. Cho hàm số y=(m−1)x+n có đồ thị là đường thẳng d a) Tìm m và n để đường thẳng d đi qua hai điểm A(1;2), B(2;5). b) Tìm m và n biết đường thẳng d có hệ số góc bằng 3, cắt trục hoành tại điểm có hoành độ bằng –2. c) Tìm m và n biết đường thẳng d trùng với đường thẳng d:y=5x-3. Bài 3. a) Cho hai đường thẳng d:y=(m-3)x-3m+3, d, :y=(2m+1)x+m+5 Tìm m để hai đường thẳng cắt nhau; song song với nhau; vuông góc với nhau; trùng nhau; cắt nhau tại một điểm nằm trên trục tung. b) Tìm m để ba đường thẳng d:y=2x+5,d:y=x+2,d :y=mx−12 đồng quy
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) đi qua hai điểm A(-1;2), B(3; -4);
Đường thẳng y = (m – 2)x + n (d) đi qua hai điểm A(-1;2) và B(3; -4). Khi đó tọa độ các điểm A, B thỏa mãn (d), nghĩa là:
2 = (m – 2)(-1) + n (1)
và -4 = (m – 2).3 + n (2)
Rút gọn hai phương trình (1) và (2), ta được
-m + n = 0; (1’)
3m + n = 2. (2’)
Từ (1’) suy ra n = m. Thay vào (2’), ta có 3m + 3 = 2 suy ra m = 1/2.
Trả lời: Khi m = n = 1/2 thì (d) đi qua hai điểm A và B đã cho.
Cho hai đường thẳng :
(d 1 ) : y = - 3x + m + 1
(d 2 ) : y = ( 2k + 6 ) x + 2 – m ( k ≠ - 3 )
a) Xác định k, m để hai đường thẳng trùng nhau
b) Xác định k, m để hai đường thẳng song song
c) Xác định k, m để hai đường thẳng cắt nhau
d) Xác định k, m để hai đường thẳng vuông góc với nhau
Để 2 đường thẳng trùng nhau \(\Rightarrow\left\{{}\begin{matrix}2k+6=-3\\2-m=m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=-\frac{9}{2}\\m=\frac{1}{2}\end{matrix}\right.\)
Để 2 đường thẳng song song \(\Rightarrow\left\{{}\begin{matrix}2k+6=-3\\2-m\ne m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=-\frac{9}{2}\\m\ne\frac{1}{2}\end{matrix}\right.\)
Để 2 đường thẳng cắt nhau \(\Rightarrow2k+6\ne-3\Rightarrow k\ne-\frac{9}{2}\)
Để 2 đường thẳng vuông góc \(\Rightarrow\left(2k+6\right).\left(-3\right)=1\Rightarrow k=-\frac{19}{6}\)
Cho hai đường thẳng (d1) y=2x -1.
(d2) y=-x +2 .
a/Chứng tỏ hai đường thẳng d1 và d2 cắt nhau .
Tìm tọa độ giao điểm M của hai đường thẳng trên .
b/ Vẽ hai đường thẳng d1 và d2 trên cùng 1 hệ trục tọa độ .
c/ Lập phương trình đường thẳng d3 đi qua M và có hệ số góc bằng 3 .
d/ Lập phương trình đường thẳng d4 đi qua M và song song với d5 :y =5x -7 .
Cho hai đường thẳng (d) y = (2m – 3)x + n – 1 và (d') y = mx + 2n
Xác định các hệ số m, n sao cho:
b) (d) đi qua điểm A (2; 5) và B ( -2; 3)
b) (d) đi qua điểm A (2; 5) và B ( -2; 3) khi:
Trên mặt phẳng toại độ Oxy, cho đường thẳng (d):y=(m-1)x-m với m là tham số.
Tìm m để (d) đồng quy với hai đường thẳng (d'):y=x - `2/3` và (d''):y=-x+1
Tọa độ giao điểm của (d') với (d'') là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x-\dfrac{2}{3}=-x+1\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+x=\dfrac{2}{3}+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{5}{3}\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=-\dfrac{5}{6}+1=\dfrac{1}{6}\end{matrix}\right.\)
Thay x=5/6 và y=1/6 vào (d), ta được:
\(\dfrac{5}{6}\left(m-1\right)-m=\dfrac{1}{6}\)
=>\(\dfrac{5}{6}m-\dfrac{5}{6}-m=\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}m=1\)
=>m=-1:1/6=-6
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) cắt đường thẳng y = 1/2x - 3/2
Ta có: y = 0,5x – 1,5. (d1)
Đường thẳng (d) và ( d 1 ) khi m – 2 ≠ 0,5, còn n lấy giá trị tùy ý. Suy ra (d) cắt ( d 1 ) khi m ≠ 2,5 còn n tùy ý.
Trả lời: (d) cắt ( d 2 ) khi m ≠ 2,5 còn n tùy ý.