Những câu hỏi liên quan
TT
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
NT
9 tháng 1 2023 lúc 22:32

b: Thay x=1 vào y=x+1, ta đc:

y=1+1=2

Thay x=1 và y=2 vào (d), ta được;

m+1-2=2

=>m+1=2

=>m=1

c: Tọa độ A là:

y=0 và (m+1)x-2=0

=>x=2/m+1 và y=0

=>OA=2/|m+1|

Tọa độ B là:

x=0 và y=-2

=>OB=2

Để góc OAB=45 độ thì OA=OB

=>|m+1|=1

=>m=0 hoặc m=-2

Bình luận (0)
NB
Xem chi tiết
DD
Xem chi tiết
HP
17 tháng 12 2020 lúc 20:04

Đề là \(m\ne-\dfrac{1}{2}\) chứ.

\(x=0\Rightarrow y=-2\Rightarrow OB=2\)

\(y=0\Rightarrow x=\dfrac{2}{2m+1}\Rightarrow OA=\left|\dfrac{2}{2m+1}\right|\)

\(S_{\Delta OAB}=\dfrac{1}{2}.2.\left|\dfrac{2}{2m+1}\right|=\left|\dfrac{2}{2m+1}\right|=\dfrac{1}{2}\)

\(\Leftrightarrow\left|2m+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)

Bình luận (1)
NT
Xem chi tiết
NT
10 tháng 10 2023 lúc 21:03

a) \(y=\left(1-m\right)x+m+2\left(d\right)\)

\(y=2x-1\left(d'\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)

\(\Leftrightarrow m=-1\)

Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)

b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)

\(\Leftrightarrow\left(1-m\right)x+m+2=0\)

\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)

\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)

\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)

\(\Leftrightarrow\left(1-m\right).0+m+2=y\)

\(\Leftrightarrow y=m+2\)

\(\Rightarrow B\left(0;m+2\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)

Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi

\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)

Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)

\(\Rightarrow\left(2\right)\) vô nghiệm

Vậy không có giá trị nào của \(m\) thỏa mãn đề bài

Bình luận (0)
ND
Xem chi tiết
NT
19 tháng 4 2023 lúc 8:02

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 12 2020 lúc 18:19

a.

Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)

Với mọi m, ta có:

\(y_0=\left(m+2\right)x_0+m\)

\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)

b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)

Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết