Những câu hỏi liên quan
AN
Xem chi tiết
NL
20 tháng 12 2022 lúc 23:11

Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)

\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)

\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 16:52

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Bình luận (0)
AN
Xem chi tiết
NT
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

Bình luận (0)
SK
Xem chi tiết
NH
17 tháng 5 2017 lúc 15:26

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

Bình luận (0)
H24
Xem chi tiết
NG
27 tháng 9 2021 lúc 21:37

Pt \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(-cot\left(\dfrac{\pi}{2}-3x\right)\)

     \(\Leftrightarrow\)\(tan\left(x+\dfrac{\pi}{3}\right)\)=\(tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)=\(tan\left(\pi-3x\right)\)

     \(\Leftrightarrow\)\(x+\dfrac{\pi}{3}=\pi-3x+k\pi\)

     \(\Leftrightarrow\)4\(x\)=\(\dfrac{4}{3}\pi+k\pi\)

     \(\Leftrightarrow\) \(x=\) \(\dfrac{\pi}{3}+k\dfrac{\pi}{4}\)(\(k\in Z\))

Bình luận (0)
HP
28 tháng 9 2021 lúc 6:07

\(pt\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=-cot\left(\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=cot\left(-\dfrac{\pi}{2}+3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\dfrac{\pi}{2}+\dfrac{\pi}{2}-3x\right)\)

\(\Leftrightarrow tan\left(x+\dfrac{\pi}{3}\right)=tan\left(\pi-3x\right)\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\pi-3x+k\pi\)

\(\Leftrightarrow4x=\dfrac{2\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k\pi}{4}\)

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 18:02

Điều kiện:

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

⇔ tan x.(1 - tanx) + tanx + 1 = 1 – tan x.

⇔ tan x - tan2x + 2.tan x = 0

⇔ tan2x - 3tanx = 0

⇔ tanx(tanx - 3) = 0

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 6 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình đã cho có tập nghiệm là:

{arctan 3+kπ; k ∈ Z }

Bình luận (0)
H24
Xem chi tiết
NL
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Bình luận (0)