Những câu hỏi liên quan
AB
Xem chi tiết
NT
11 tháng 4 2022 lúc 18:43

Bài 2: 

a: \(f\left(x\right)=-9x^3-2x^2+6x-3\)

\(G\left(x\right)=9x^3-6x+53\)

b: \(H\left(x\right)=9x^3-6x+53-9x^3-2x^2+6x-3=-2x^2+50\)

c: Đặt H(x)=0

=>2x2-50=0

=>x=5 hoặc x=-5

Bình luận (0)
LL
Xem chi tiết
HP
12 tháng 4 2021 lúc 15:10

Gọi nhiệt độ cân bằng là \(t\left(t_2< t< t_3\right)\)

Giả sử \(t>t_1\Rightarrow Q_{thu}=Q_1+Q_2;Q_{tỏa}=Q_3\)

\(Q_{thu}=Q_{tỏa}\)

\(\Leftrightarrow Q_1+Q_2=Q_3\)

\(\Leftrightarrow m_1.C_1.\left(t-t_1\right)+m_2.C_2.\left(t-t_2\right)=m_3.C_3.\left(t_3-t\right)\)

\(\Leftrightarrow2000.\left(t-6\right)+10.4000.\left(t+40\right)=5.2000.\left(60-t\right)\)

\(\Leftrightarrow t=-19^oC\) (Trái với giả sử)

\(\Rightarrow t< t_1\Rightarrow Q_{thu}=Q_2;Q_{tỏa}=Q_1+Q_3\)

\(Q_{thu}=Q_{tỏa}\)

\(\Leftrightarrow m_2.C_2.\left(t-t_2\right)=m_1.C_1.\left(t-t_1\right)+m_3.C_3.\left(t_3-t\right)\)

\(\Leftrightarrow10.4000.\left(t+40\right)=2000.\left(t-6\right)+5.2000.\left(60-t\right)\)

\(\Leftrightarrow t=-19^oC\)

Kết luận: Nhiệt độ khi cân bằng là \(t=-19^oC\)

Bình luận (0)
NT
Xem chi tiết
NL
8 tháng 3 2022 lúc 16:32

\(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-5x-6}{1-4x^3+x^2}=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3\left(3-\dfrac{5}{x^2}-\dfrac{6}{x^3}\right)}{x^3\left(\dfrac{1}{x^3}-4+\dfrac{1}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{5}{x^2}-\dfrac{6}{x^3}}{\dfrac{1}{x^3}-4+\dfrac{1}{x}}=\dfrac{3-0-0}{0-4+0}=-\dfrac{3}{4}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(3x^2+8\right)\left(2x+1\right)}{5-4x^3}=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3+\dfrac{8}{x}\right)x\left(2+\dfrac{1}{x}\right)}{x^3\left(\dfrac{5}{x^3}-4\right)}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(3+\dfrac{8}{x}\right)\left(2+\dfrac{1}{x}\right)}{\dfrac{5}{x^3}-4}=\dfrac{\left(3+0\right)\left(2+0\right)}{0-4}=-\dfrac{6}{4}=-\dfrac{3}{2}\)

 

Bình luận (0)
NL
8 tháng 3 2022 lúc 16:34

\(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+7}{3-2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{x\left(-5+\dfrac{7}{x}\right)}{x\left(\dfrac{3}{x}-2\right)}=\lim\limits_{x\rightarrow+\infty}\dfrac{-5+\dfrac{7}{x}}{\dfrac{3}{x}-2}=\dfrac{-5+0}{0-2}=\dfrac{5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{7}{2x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{7}{x}}{2-\dfrac{1}{x}}=\dfrac{0}{2-0}=0\)

Bình luận (1)
H24
Xem chi tiết
NL
7 tháng 2 2021 lúc 18:33

a.

C là trung điểm của AD nên tọa độ D thỏa mãn:

\(\left\{{}\begin{matrix}x_D=2x_C-x_A=-3\\y_D=2y_C-y_A=3\\z_D=2z_C-z_A=4\end{matrix}\right.\) \(\Rightarrow D\left(-3;3;4\right)\)

b.

Gọi \(E\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3;0;-3\right)\\\overrightarrow{EC}=\left(-2-x;2-y;3-z\right)\end{matrix}\right.\)

ABCE là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{EC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2-x=3\\2-y=0\\3-z=-3\end{matrix}\right.\) \(\Leftrightarrow E\left(-5;2;6\right)\)

Bình luận (0)
NL
7 tháng 2 2021 lúc 18:40

c.

Gọi \(F\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{FA}=\left(-1-x;1-y;2-z\right)\\\overrightarrow{FB}=\left(2-x;1-y;-1-z\right)\\\overrightarrow{FC}=\left(-2-x;2-y;3-z\right)\end{matrix}\right.\)

\(2\overrightarrow{FA}+3\overrightarrow{FB}=\overrightarrow{FC}\Leftrightarrow\left\{{}\begin{matrix}2\left(-1-x\right)+3\left(2-x\right)=-2-x\\2\left(1-y\right)+3\left(1-y\right)=2-y\\2\left(2-z\right)+3\left(-1-z\right)=3-z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{4}\\z=-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow F\left(\dfrac{3}{2};\dfrac{3}{4};-\dfrac{1}{2}\right)\)

d.

Gọi G có tọa độ dạng: \(G\left(x;y;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AG}=\left(x+1;y-1;-2\right)\\\overrightarrow{BG}=\left(x-2;y-1;1\right)\end{matrix}\right.\)

Ba điểm A;B;G thẳng hàng khi:

\(\dfrac{x-2}{x+1}=\dfrac{y-1}{y-1}=\dfrac{1}{-2}\)

\(\Rightarrow\) Không tồn tại G thỏa mãn yêu cầu đề bài

Bình luận (0)
NL
7 tháng 2 2021 lúc 18:46

e.

Gọi \(H\left(0;y;0\right)\) và H' là trọng tâm tam giác HBC

\(\Rightarrow H'\left(0;\dfrac{y+3}{3};\dfrac{2}{3}\right)\)

H' thuộc Oz khi và chỉ khi \(\dfrac{y+3}{3}=0\Leftrightarrow y=-3\)

\(\Rightarrow H\left(0;-3;0\right)\)

f.

\(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AB.d\left(C;AB\right)\\S_{ABI}=\dfrac{1}{2}AB.d\left(I;AB\right)\end{matrix}\right.\)

Mà \(S_{ABC}=3S_{ABI}\Rightarrow d\left(C;AB\right)=3d\left(I;AB\right)\)

\(\Rightarrow\overrightarrow{CB}=3\overrightarrow{IB}\)

Gọi \(I\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CB}=\left(4;-1;-4\right)\\\overrightarrow{IB}=\left(2-x;1-y;-1-z\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2-x\right)=4\\3\left(1-y\right)=-1\\3\left(-1-z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow...\) (bạn tự giải ra kết quả)

Bình luận (0)
SG
Xem chi tiết
DH
28 tháng 5 2022 lúc 23:17

Câu 10: 

Gọi \(H\) là giao điểm của \(MO\) và \(AB\).

Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\)

\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).

\(S_{MAOB}=S_{MAO}+S_{MBO}\)

\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)

\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)

Chọn C. 

Bình luận (0)
SG
Xem chi tiết
H24
29 tháng 5 2022 lúc 1:02

Đài ơi, giải giúp cho Sarah đi, tớ không có viết và giờ vào giường rồi , good nigh

Bình luận (0)
NT
Xem chi tiết
NT
10 tháng 1 2022 lúc 8:30

Câu 28: C

Câu 27: D

Câu 26: C

Câu 25: B

Bình luận (0)
NT
Xem chi tiết
GD

\(Cu\left(OH\right)_2+2HNO_3\rightarrow Cu\left(NO_3\right)_2+2H_2O\\ MgO+2HCl\rightarrow MgCl_2+H_2O\\ Fe\left(OH\right)_3+3HCl\rightarrow FeCl_3+3H_2O\\ Fe_2\left(SO_4\right)_3+3BaCl_2\rightarrow3BaSO_4\downarrow+2FeCl_3\)

Bình luận (0)
H24
10 tháng 1 2022 lúc 8:34
Bình luận (0)
H24
Xem chi tiết
DL
11 tháng 4 2022 lúc 9:01

Khúc đầu bt lm vầy thoi còn đoạn sau sợ làm quá nó lố lăng nên để bn lm:3

undefined

Bình luận (7)
Z0
11 tháng 4 2022 lúc 11:54

undefined
đây bạn, câu b bạn tự làm nhé 

Bình luận (2)