NT

Giúp em với ạ em cảm ơn mng

NL
8 tháng 3 2022 lúc 16:32

\(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^3-5x-6}{1-4x^3+x^2}=\lim\limits_{x\rightarrow-\infty}\dfrac{x^3\left(3-\dfrac{5}{x^2}-\dfrac{6}{x^3}\right)}{x^3\left(\dfrac{1}{x^3}-4+\dfrac{1}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{5}{x^2}-\dfrac{6}{x^3}}{\dfrac{1}{x^3}-4+\dfrac{1}{x}}=\dfrac{3-0-0}{0-4+0}=-\dfrac{3}{4}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(3x^2+8\right)\left(2x+1\right)}{5-4x^3}=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3+\dfrac{8}{x}\right)x\left(2+\dfrac{1}{x}\right)}{x^3\left(\dfrac{5}{x^3}-4\right)}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(3+\dfrac{8}{x}\right)\left(2+\dfrac{1}{x}\right)}{\dfrac{5}{x^3}-4}=\dfrac{\left(3+0\right)\left(2+0\right)}{0-4}=-\dfrac{6}{4}=-\dfrac{3}{2}\)

 

Bình luận (0)
NL
8 tháng 3 2022 lúc 16:34

\(\lim\limits_{x\rightarrow+\infty}\dfrac{-5x+7}{3-2x}=\lim\limits_{x\rightarrow+\infty}\dfrac{x\left(-5+\dfrac{7}{x}\right)}{x\left(\dfrac{3}{x}-2\right)}=\lim\limits_{x\rightarrow+\infty}\dfrac{-5+\dfrac{7}{x}}{\dfrac{3}{x}-2}=\dfrac{-5+0}{0-2}=\dfrac{5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{7}{2x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{7}{x}}{2-\dfrac{1}{x}}=\dfrac{0}{2-0}=0\)

Bình luận (1)