Những câu hỏi liên quan
SK
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 6 2018 lúc 15:42

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
SK
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 4 2017 lúc 7:45

Lấy số dương ε bé tùy ý bất kì:

⇒ có một số n0 thỏa mãn: |vn| < ε kể từ n = n0.

⇒ |un – 2| < vn < |vn| < ε kể từ n = n0 trở đi

⇒ lim (un – 2) = 0

⇒ lim un = 2.

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 1 2019 lúc 2:29

Dãy ( u n   +   v n ) không có giới hạn hữu hạn.

Thật vậy, giả sử ngược lại ( u n   +   v n ) có giới hạn hữu hạn.

Khi đó, các dãy số ( u n   +   v n )   v à   ( u n ) cùng có giới hạn hữu hạn, nên hiệu của chúng cũng là một dãy có giới hạn hữu hạn, nghĩa là dãy số có số hạng tổng quát là u n   +   v n   −   u n   =   v n  có giới hạn hữu hạn. Điều này trái với giả thiết ( v n ) không có giới hạn hữu hạn.

Bình luận (0)
MN
Xem chi tiết
NL
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

Bình luận (0)
NV
Xem chi tiết