Chứng minh các đẳng thức sau: x 2 y + 2 x y 2 + y 3 2 x 2 + x y - y 2 = x y + y 2 2 x - y
chứng minh các đẳng thức sau
(x+y)2+(x-y)2=2(x2+y2)
\(\left(x+y\right)^2+\left(x-y\right)^2=2\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x^2+2y^2=2\left(x^2+y^2\right)\left(đúng\right)\)
chứng minh các đẳng thức sau
(x+y)2+(x-y)2=2(x2+y2)
Chứng minh các đẳng thức sau: 2 ( x - y ) 3 ( y - x ) = - 2 3 ( v ớ i x ≠ y )
chứng minh các đẳng thức sau (x-y)^3 +4y(2x^2+y^2)=(x+y)^3+2y(x^2+y^2)
\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)
\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)
\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)
\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)
Chứng minh các đẳng thức sau
a)(a-b)2=(a+b)2-4ab
b)(x+y)2+(x-y)2=2(x2+y2)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)
\(=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=VP\left(dpcm\right)\)
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+y^2\right)+\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2\right)=VP\left(dpcm\right)\)
Chứng minh các đẳng thức sau:
a) ( a + b ) 2 − ( a − b ) 2 4 = ab ;
b) 2 ( x 2 + y 2 ) = ( x + y ) 2 + ( x – y ) 2 .
a) VT = ( a + b + a − b ) ( a + b − a + b ) 4 = 2 a . 2 b 4 = 4 = VP => đpcm.
b) VP = x 2 + 2 xy + y 2 + x 2 – 2 xy + y 2 = 2 ( x 2 + y 2 ) = VT => đpcm.
Bài 8 : Chứng minh các đẳng thức sau
a. ( a2 - 1 )2 + 4a2 = ( a2 + 1 )2
b. ( x - y ) + ( x + y ) 2 + 2(x2 - y2 ) = 4x2
\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)
bài 1 chứng minh các đẳng thức sau
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2
BĐVT ta đc:\(\left(x+y\right)\left(x+y+z\right)-2\left(x-1\right)\left(y+1\right)+2\)
\(=x^2+2xy+y^2+xz+yz-\left[\left(2x-1\right)\left(y+1\right)\right]\)
\(=x^2+2xy+y^2+xz+yz-\left(2xy+2x-y-1\right)\)
\(=x^2+y^2+2xy+xz+yz-2xy-2x+y+1\)
Đề sai hả bn
mik phân tích đc như này:
x^2+xy+yx+y^2+xz+yz-(2x+2)(y+1)+2=x^2+y^2
chứng minh đẳng thức sau: (x+y)(x+y+z)-2(x-1)(y+1)+2=x^2+y^2