Những câu hỏi liên quan
MN
Xem chi tiết
NL
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 6 2018 lúc 15:42

Bình luận (0)
MN
Xem chi tiết
AH
28 tháng 3 2021 lúc 21:09

Lời giải:

$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.

Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$

Mặt khác:

$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.

Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$. 

Ta có: $a=n^2(a-a)\Rightarrow a=0$

Vậy $\lim u_n=0$

 

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 3 2019 lúc 18:16

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Dự đoán

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Chứng minh dự đoán trên bằng quy nạp (bạn đọc tự chứng minh).

Từ đó

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 5 2018 lúc 12:10

Chọn C.

Phương pháp : Dãy số giảm bị chặn dưới thì có giới hạn.

Cách giải : Dễ thấy dãy số đã cho là dãy số dương.

Vậy dãy số đã cho giảm và bị chặn dưới nên có giới hạn.

Bình luận (0)
NA
Xem chi tiết
HH
18 tháng 2 2021 lúc 22:32

1/ \(\lim\limits\dfrac{\dfrac{2^n}{7^n}-5.7.\left(\dfrac{7}{7}\right)^n}{\dfrac{2^n}{7^n}+\left(\dfrac{7}{7}\right)^n}=-35\)

2/ \(\lim\limits\dfrac{\dfrac{3^n}{7^n}-2.5.\left(\dfrac{5}{7}\right)^n}{\dfrac{2^n}{7^n}+\dfrac{7^n}{7^n}}=0\)

3/ \(\lim\limits\sqrt[3]{\dfrac{\dfrac{5}{n}-\dfrac{8n}{n}}{\dfrac{n}{n}+\dfrac{3}{n}}}=\sqrt[3]{-8}=-2\)

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 12 2019 lúc 18:32

Đáp án là C

Chia cả tử và mẫu cho n2  (n2 là lũy thừa bậc cao nhất của n trong mẫu thức), ta được :

u n = 3 n 3 + 2 n - 1 2 n 2 - n = 3 n + 2 n - 1 n 2 2 - 1 n

Do  l i m 3 n + 2 n - 1 n 2 = + ∞ ; l i m 2 - 1 n = 2 > 0

Vậy  l i m   u n = + ∞

Cách 2: Ta có l i m   u n = l i m n 3 3 + 2 n 2 - 1 n 3 n 2 2 - 1 n = l i m n 3 + 2 n 2 - 1 n 3 2 - 1 n  

Vì l i m   n = + ∞  và  l i m 3 + 2 n 2 + 1 n 3 2 - 1 n = 3 2 > 0  nên theo quy tắc 2, l i m   u n = + ∞

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 9 2019 lúc 13:14

- Chia cả tử và mẫu cho n 2  ( n 2  là lũy thừa bậc cao nhất của n trong mẫu thức), ta được:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 4)

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 4)

Chọn C

Bình luận (0)