Cho phương trình x + 1 x - 2 = x - 1 Khi x = 2 vế trái của phương trình đã cho có nghĩa không? Vế phải có nghĩa khi nào?
Cho phương trình \(x^2-2\left(k-1\right)x+k-4=0\)
Giải phương trình với k=1
Thay `k=1` vào pt ta có;
\(x^2-2.\left(1-1\right)x+1-4=0\\
\Leftrightarrow x^2-2.0x-3=0\\
\Leftrightarrow x^2-3=0\\
\Leftrightarrow x^2=3\\
\Leftrightarrow x=\pm\sqrt{3}\)
Cho 2 phương trình : x2+4kx-17=0 (1) và 4x2+4kx+k2-25=0 (2)
a, giải phương trình (1) với k=4
b, tìm k sao cho phương trình (1) nhận x=2 làm nghiệm
c, tìm k để phương trình (2) nhận x=-2 làm nghiệm
a,Thay k=4 vào pt (1) ta đc
x2+4*4x-17=0
<=>x2+16x-17=0
<=>x2-x+17x-17=0
<=>(x2-x)+(17x-17)=0
<=>x(x-1)+17(x-1)=0
<=>(x+17)(x-1)=0
<=>x+17=0 hoặc x-1=0
*x+17=0 *x-1=0
<=>x=-17 <=>x=1
vậy k=4 thì pt có tập nghiệm S={-17;1}
2 ý sau cũng thay và làm
CHo hai phương trình: \(x^2+x+k-1=0\left(1\right)\) và \(x^2-\left(k+2\right)x+2k+4=0\left(2\right)\). Với giá trị nào của k thì 2 phương trình trên tương đương
Tìm giá trị k sao cho:
a) phương trình: 2x+k=x-1 có nghiệm x=-2
b) phương trình: (2x+1)(9x+2k)-5(x+2)=40 có nghiệm x=-2
c) phương trình:2(2x+1)+18=3(x+2)(2x+k) có nghiệm x=1
\(a,\Leftrightarrow-4+k=-3\Leftrightarrow k=1\\ b,\Leftrightarrow-3\left(2k-18\right)=40\\ \Leftrightarrow2k-18=-\dfrac{40}{3}\Leftrightarrow k=\dfrac{7}{3}\\ c,\Leftrightarrow10+18=9\left(2+k\right)\\ \Leftrightarrow k+2=\dfrac{28}{9}\Leftrightarrow k=\dfrac{10}{9}\)
Cho phương trình ẩn x : 9x^2-25-k^2-2kx=0
a) Giải phương trình với k=0
b)Tìm các giá trị của k sao cho phương trình nhận x=-1 là nghiệm
a: Khi k=0 thì PT sẽ là:
9x^2-25=0
=>x=5/3 hoặc x=-5/3
b: Thay x=-1 vào pt, ta sẽ được:
-k^2+2k+9-25=0
=>-k^2+2k-16=0
=>\(k\in\varnothing\)
cho hệ phương trình x + y = 3k - 2
2x - y = 5 với k là tham số
giải hệ phương trình khi k = 1
tìm k để hệ phương trình có nghiệm ( x ; y) sao cho x^2 - y - 5/ y + 1 = 4
Thay k=1 và HPT ta có:
\(\left\{{}\begin{matrix}x+y=3.1-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y=1\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x+2y=2\\3y=-3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiệm (x;y) = (2;-1)
b) tìm k để hệ phương trình có nghiệm ( x ; y) sao cho \(x^2-y-\dfrac{5}{y}+1=4\)
\(\left\{{}\begin{matrix}x+y=3k-2\\2x-y=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-\left(3k-2-x\right)=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\2x-3k+2+x=5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\3x=3k+3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}y=3k-2-x\\x=k+1\end{matrix}\right.\)
Ta có \(\text{ x= k+1 }=>y=2k-3\) (*)
Thay vào biểu thức đã cho ở đề bài ta có :
\(x^2-y-\dfrac{5}{y}+1=4\)
⇔\(\left(k+1\right)^2-2k+3-\dfrac{5}{2k-3}+1=4\)
⇔\(k^2+2k+1-2k+3-\dfrac{5}{2k-3}+1=4\)
Sau một hồi bấm máy tính Casio thì ra k=2
Vậy k=2 thì Thỏa mãn yêu cầu đề bài
Lần sau bạn dùng Latex đánh đề bài cho dễ nhìn nha, mình sợ chép lại đề bài bị sai @@
Cho phương trình x2 - 2 ( k - 1 ) x + k - 3 = 0
1. CHứng minh rằng phương trình luôn có nghiệm với mọi k
2. tìm k để phương trình có 2 nghiệm đều dương
cho phương trình : x2-(2k+1)x+k2+k=0
a) giải phương trình khi k=0
b ) tìm k để phương trình có hai nghiệm phân biệt x1,x2 và tất cả nghiệm này điều nghiệm của phương trình x3 + x2 =0 (mình cần gắp )
Tìm giá trị của k sao cho:
a. Phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k) có nghiệm x = 1
a. Thay x = 2 vào phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40, ta có:
(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3(2.2+1)(9.2+2k)−5(2+2)=40⇔(4+1)(18+2k)−5.4=40⇔5(18+2k)−20=40⇔90+10k−20=40⇔10k=40−90+20⇔10k=−30⇔k=−3
Vậy khi k = -3 thì phương trình (2x + 1)(9x + 2k) – 5(x + 2) = 40 có nghiệm x = 2
b. Thay x = 1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k)2(2x+1)+18=3(x+2)(2x+k), ta có:
2(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=69=232(2.1+1)+18=3(1+2)(2.1+k)⇔2(2+1)+18=3.3(2+k)⇔2.3+18=9(2+k)⇔6+18=18+9k⇔24−18=9k⇔6=9k⇔k=\(\frac{6}{9}\)=\(\frac{2}{3}\)
Vậy khi thì phương trình có nghiệm x = 1
thế x vào bấm máy tính nhanh nhứt :)))
Cho hệ phương trình
\(\begin{cases} (k - 1)x + y = 3k - 4\\ x + (k - 1)y = k - 1 \end{cases}\)
Tìm k ϵ Z để hệ phương trình có nghiệm (x; y) sao cho x, y ϵ Z