Tìm m để các bất phương trình 3 sin 2 x + cos 2 x sin 2 x + 4 cos 2 x + 1 ≤ m + 1 đúng với mọi x ∈ R
A. m ≥ 3 5 4
B. m ≥ 3 5 + 9 4
C. m ≥ 65 - 9 4
D. m ≥ 3 5 - 9 4
Tìm m để bất phương trình ( 3 sin x - 4 cos x ) 2 - 6 sin x + 8 cos x ≤ 2 m - 1 đúng với mọi x ∈ R .
A.
B.
C.
D.
Cho các bất phương trình: x−3≤ m + 2 7 + m + 3 6 + m + 4 5 và x ≤ 0 . Tìm m để hai bất phương trình tương đương.
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)
5A. Các cặp bất phương trình sau đây có tương đương không?
a) x≤3 và 2x≤6 b) x2 + 3 >0 và |3x+1| < -1
5B. bất phương trình sau đây có tương đương không? Vì saO
a) 2+x >4 và -x < -2 b) ( x2+1 )x ≥ 0 và 2x4 ≥ 0
6A. Cho hai bất phương trình x+5 ≥ |m2+2m| + 12 và x≥7 . Tìm m để hai bất phương trình tương đương.
6B. Tìm các giá trị của m để hai bất phương trình x< -2 và x< \(\frac{m^2+4m-9}{2}\) tương đương.
tìm m để phương trình (m+1)x2 + 2(m+3)x - m+2 =0 có 2 nghiệm phân biệt
tìm các giá trị của tham số m để bất phương trình (m2 - 4m -5)x2 +2(m-5)x-1\(\ge0\) vô nghiệm
a.
Pt có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\)
\(\Rightarrow m\ne-1\)
b.
BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x
- Với \(m=-1\) ko thỏa mãn
- Với \(m=5\) thỏa mãn
- Với \(m\ne\left\{-1;5\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)
Kết hợp lại ta được: \(2< m\le5\)
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
3:
x^2-2x+1-m^2<=0
=>(x-1)^2-m^2<=0
=>(x-1)^2<=m^2
=>-m<=x-1<=m
=>-m+1<=x<=m+1
mà x thuộc [-1;2]
nên -m+1>=-1 và m+1<=2
=>-m>=-2 và m<=1
=>m<=2 và m<=1
=>m<=1
Cho bất phương trình x + 6 + m > x 6 − 3 . Tìm m để bất phương trình có nghiệm x = 3.
Cho bất phương trình 9 x + ( m - 1 ) . 3 x + 3 > 0 ( 1 ) . Tìm tất cả các giá trị của tham số m để bất phương trình (1) nghiệm đúng ∀ x > 1
A. m ≥ - 3 2
B. m > - 3 2
C. m > 3 + 2 2
D. m ≥ 3 + 2 2
tìm các giá trị của m để bất phương trình : (m + 1)x^2 - 2(m + 1)x + 2m+3 > 0nghiệm đúng với mọi x thuộc R
- Với \(m=-1\) BPT trở thành: \(1>0\) thỏa mãn
- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:
\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(2m+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(-m-2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -2\\m>-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge-1\end{matrix}\right.\)