Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 4 2018 lúc 6:16

Chọn B

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 7 2018 lúc 11:29

Tìm được m = -9.

Bình luận (0)
AD
Xem chi tiết
NH
Xem chi tiết
CL
Xem chi tiết
NL
22 tháng 3 2022 lúc 23:39

a.

Pt có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

\(\Rightarrow m\ne-1\)

b.

BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x

- Với \(m=-1\) ko thỏa mãn

- Với \(m=5\) thỏa mãn

- Với \(m\ne\left\{-1;5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)

Kết hợp lại ta được: \(2< m\le5\)

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 7 2017 lúc 16:57

Chọn đáp án C

Bình luận (0)
CK
Xem chi tiết
NT
28 tháng 7 2023 lúc 0:30

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

Bình luận (0)
BP
19 tháng 3 2024 lúc 23:19
Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 7 2017 lúc 15:47

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 8 2018 lúc 10:39

Bình luận (0)
H24
Xem chi tiết
NL
20 tháng 3 2022 lúc 21:14

- Với \(m=-1\) BPT trở thành: \(1>0\) thỏa mãn

- Với \(m\ne-1\) BPT nghiệm đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(2m+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(-m-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -2\\m>-1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge-1\end{matrix}\right.\)

Bình luận (0)