Những câu hỏi liên quan
VN
Xem chi tiết
HN
10 tháng 7 2016 lúc 12:15

Ta có : \(M=\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=\frac{abc}{a^2}+\frac{abc}{b^2}+\frac{abc}{c^2}=abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=8.\frac{3}{4}=6\)

Vậy M = 6

Bình luận (1)
AT
Xem chi tiết
NH
Xem chi tiết
TB
8 tháng 3 2016 lúc 20:10

bố ông là căng rồi

Bình luận (0)
NQ
8 tháng 3 2016 lúc 20:16

a=8

b=12

c=20

=>a+b+c=40

Bình luận (0)
CL
Xem chi tiết
HT
13 tháng 2 2016 lúc 21:42

1) a=2 ,b=3 Ia+bI=5

Bình luận (0)
TT
13 tháng 2 2016 lúc 21:40

Từng bài 1 thôi bn

Bình luận (0)
CL
13 tháng 2 2016 lúc 21:46

hix, lm bt vio ak, mình pít kết quả hết oy, nhg mà thầy kiu trình bày ra, bạn nào giúp mình với

Bình luận (0)
KK
Xem chi tiết
NY
Xem chi tiết
DA
5 tháng 4 2015 lúc 15:04

Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

Suy ra: a=3k, b=4k, c=5k

a.b.c=480 suy ra 3k.4k.5k=480

suy ra: 60.k^3=480

            k^3=480:60=8

Vậy k=2

Thay vào ta có:a=6, b=8,c=10

Bình luận (0)
H24
5 tháng 4 2015 lúc 15:11

Đặt: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)

\(\Rightarrow\)  a = 3k, b = 4k, c = 5k

a.b.c=480 \(\Rightarrow\) 3k.4k.5k=480

\(\Rightarrow\) 60.k^3=480

            k^3 = 480:60 = 8

Vậy  k= 2

Thay vào ta có:a = 6 , b = 8, c = 10

Bình luận (0)
BT
Xem chi tiết
H24
20 tháng 8 2023 lúc 9:49

Để giải bài toán này, ta sẽ bắt đầu bằng việc tìm giá trị của a + b + c và ab + bc + ca.

Theo đề bài, ta có: a.b.c = 1

Đặt S = a + b + c và P = ab + bc + ca. Ta có thể viết lại biểu thức ban đầu như sau: (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8(a + b + c) - 8(ab + bc + ca) (a^2 + b^2 + c^2) - (1/a^2 + 1/b^2 + 1/c^2) = 8S - 8P

Để đơn giản hóa công thức, ta sẽ nhân cả hai vế của phương trình với a^2b^2c^2: (a^2b^2c^2)(a^2 + b^2 + c^2) - (a^2b^2c^2)(1/a^2 + 1/b^2 + 1/c^2) = 8(a^2b^2c^2)(S - P)

Sau khi nhân và rút gọn, ta được: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(a^2b^2c^2)(S - P)

Do a.b.c = 1, ta có: a^2b^2c^2 = 1

Thay lại vào phương trình trên, ta có: (a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4) - (a^2b^2 + a^2c^2 + b^2c^2) = 8(S - P)

Rút gọn các thành phần, ta được: a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 = 8(S - P)

Ta có thể viết lại đẹp hơn bằng cách nhân 2 vào cả hai vế: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16(S - P)

Rút gọn, ta được: 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2) = 16S - 16P

Từ đó, ta có: 16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Chú ý rằng: P = ab + bc + ca S = a + b + c

Tiếp theo, ta sẽ xem xét biểu thức P = 1/a-1 + 1/b-1 + 1/c-1. Ta có thể viết lại biểu thức này như sau: P = (1/a + 1/b + 1/c) - 3

Ta biết rằng abc = 1, do đó: 1/a + 1/b + 1/c = ab + bc + ca

Thay vào biểu thức P, ta có: P = (ab + bc + ca) - 3

Như vậy, biểu thức P có thể được thay bằng biểu thức P = P - 3.

Tiếp theo, ta sẽ sử dụng kết quả từ phương trình trên để tính giá trị của P.

16P - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Thay P = P - 3 vào phương trình trên, ta có: 16(P - 3) - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

Rút gọn và chuyển thành phương trình bậc hai: 16P - 48 - 16S = 2(a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2)

8P - 24 - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2

8P - 8S = a^4b^2 + a^2b^4 + a^4c^2 + a^2c^4 + b^4c^2 + b^2c^4 - a^2b^2 - a^2c^2 - b^2c^2 + 24

8(P - S) = (a^2b^2 + a^2c^2 + b^2c^2)^2 - (a^2b^2 + a^2c^2 + b^2c^2) - a^2b^2 - a^2c^2 - b^2c^2 + 24

Đặt Q = a^2b^2 + a^2c^2 + b^2c^2, ta có: 8(P - S) = Q^2 - Q - Q + 24

8(P - S) = Q^2 - 2Q + 24

8(P - S) = (Q - 4)^2

Ta có thể viết lại thành phương trình: (P - S) = (Q - 4)^2 / 8

Do đó, giá trị của P - S là bình phương của một số chia cho 8.

Tuy nhiên, chúng ta không có thông tin cụ thể về giá trị của Q, vì vậy không thể tìm ra giá trị chính xác của P - S.

Vì vậy, không thể tính giá trị của biểu thức P = 1/a-1 + 1/b-1 + 1/c-1 chỉ dựa trên thông tin đã cho trong bài toán.

Bình luận (0)
TA
Xem chi tiết
HN
Xem chi tiết
LV
2 tháng 8 2017 lúc 16:53

Đặt\(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a= 3k; b= 12k;c=5k

a.b.c = 22,5 => 3k.12k.5k = 22,5 = 180k3 = 22,5 => k3 = 0,125 => k = 0,5

Do đó:\(\frac{a}{3}=0,5=>a=1,5\)

          \(\frac{b}{12}=0,5=>b=6\)

          \(\frac{c}{5}=0,5=>c=2,5\)   

Vậy...

Bình luận (0)
DP
2 tháng 8 2017 lúc 16:45

Đặt \(\frac{a}{3}=\frac{b}{12}=\frac{c}{5}\)= k => a = 3k ; b = 12k ; c = 5k 

a.b.c = 22,5 => 3k.12k.5k = 22,5 => 180k3 = 22,5 => k3 = 0,125 => k= 0,5 

Do đó : \(\frac{a}{3}=0,5\Rightarrow a=1,5\)

             \(\frac{b}{12}=0,5\Rightarrow b=6\)

             \(\frac{c}{5}=0,5\Rightarrow c=2,5\)

Vậy ...

Bình luận (0)
NT
2 tháng 8 2017 lúc 16:46

Ta có: a/3=b/12=c/5. Đặt a=3k ; b=12k ; c=5k

=>3.12.5.k^3=22,5 => k^3=0,125=>k=0,5

=>a=3.0,5=1,5

    b=12.0,5=6

    c=5.0,5=2,5

Bình luận (0)