Trong mặt phẳng Oxy cho đường tròn (C): x 2 + y 2 + 2 x − 4 y – 11 = 0 . Tìm phép tịnh tiến biến (C) thành (C′): x − 10 2 + y + 5 2 = 16
Trong mặt phẳng Oxy, cho đường tròn (C): x - 1 2 + ( y - 2 ) 2 = 4 phép vị tự tâm O, tỉ số k= - 2 biến thành đường tròn có phương trình?
A. x + 1 2 + ( y - 2 ) 2 = 16
B. x - 2 2 + ( y - 4 ) 2 = 4
C. x + 2 2 + ( y + 4 ) 2 = 16
D. x - 1 2 + ( y + 2 ) 2 = 4
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 . Hỏi phép vị tự tâm O tỉ số k = -2 biến (C) thành đường tròn nào sau đây:
A. ( x - 4 ) 2 + ( y - 2 ) 2 = 16
B. ( x - 2 ) 2 + ( y - 4 ) 2 = 16
C. ( x + 2 ) 2 + ( y + 4 ) 2 = 16
D. ( x - 4 ) 2 + ( y - 2 ) 2 = 4
Trong mặt phẳng Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo véc tơ v ⇀ = ( 3 ; 2 ) biến đường tròn (C) thành đường tròn có phương trình nào sau đây?
A. x - 1 2 + y + 3 2 = 4
B. x + 2 2 + y + 5 2 = 4
C. x - 2 2 + y - 5 2 = 4
D. x + 4 2 + y - 1 2 = 4
Trong mặt phẳng tọa độ oxy, cho đường tròn C phương trình là : C x^2 + y^2 =1. đường tròn C' tâm I(2,2) cắt C tại A,B sao cho AB = √2. viết phương trình đường thẳng AB.
Đường tròn (C) tâm O(0;0) bán kính R=1
Phương trình đường thẳng IO có dạng: \(y=x\)
Do A;B là giao điểm của 2 đường tròn \(\Rightarrow AB\perp IO\)
Gọi H là trung điểm AB \(\Rightarrow H\in OI\) ; \(AH=\dfrac{AB}{2}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow OH=\sqrt{OA^2-AH^2}=\sqrt{1-\dfrac{1}{2}}=\dfrac{\sqrt{2}}{2}\)
Do H thuộc OI nên tọa độ có dạng: \(H\left(x;x\right)\Rightarrow OH=\sqrt{x^2+x^2}=\sqrt{2x^2}\)
\(\Rightarrow\sqrt{2x^2}=\dfrac{\sqrt{2}}{2}\Rightarrow x=\pm\dfrac{1}{2}\) \(\Rightarrow\left[{}\begin{matrix}H\left(\dfrac{1}{2};\dfrac{1}{2}\right)\\H\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\end{matrix}\right.\)
Đường thẳng AB qua H và vuông góc OI nên nhận \(\left(1;1\right)\) là 1 vtpt có dạng:
\(\left[{}\begin{matrix}1\left(x-\dfrac{1}{2}\right)+1\left(y-\dfrac{1}{2}\right)=0\\1\left(x+\dfrac{1}{2}\right)+1\left(y+\dfrac{1}{2}\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x+y+1=0\end{matrix}\right.\)
Trong mặt phẳng Oxy. Cho đường tròn . Phương trình tiếp tuyến với đường tròn (C), biết tiếp tuyến đó song song với đường thẳng △:4x - 3y +2 = 0
(C): (x-1)^2+(y+2)^2=4
=>R=2; I(1;-2)
Vì (d)//Δ nên (d): 4x-3y+c=0
\(d\left(I;\left(d\right)\right)=2\)
=>\(\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=2\)
=>|c+4+6|=10
=>|c+10|=10
=>c=0 hoặc c=-20
=>4x-3y=0 hoặc 4x-3y-20=0
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : ( x - 3 ) 2 + ( y - 1 ) 2 = 10 . Phương trình tiếp tuyến của (C) tại A(4;4) là
A. x - 3 y + 5 = 0
B. x + 3 y - 4 = 0
C. x - 3 y + 16 = 0
D. x + 3 y - 16 = 0
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): ( x + 1 ) 2 + ( y - 3 ) 2 = 4 . Phép tịnh tiến theo vectơ v → = 3 ; 2 biến đường tròn (C) thành đường tròn có phương trình nào dưới đây
A. ( x + 2 ) 2 + ( y + 5 ) 2 = 4
B. ( x - 1 ) 2 + ( y + 3 ) 2 = 4
C. ( x + 4 ) 2 + ( y - 1 ) 2 = 4
D. ( x - 2 ) 2 + ( y - 5 ) 2 = 4
Trong mặt phẳng Oxy cho đường tròn C : x 2 + y − 1 2 = 3 . Hỏi trong bốn đường tròn C 1 : x + 1 2 + y − 3 2 = 4 , C 2 : x − 1 2 + y 2 = 2 , C 3 : x − 1 2 + y + 3 2 = 3 , C 4 : x 2 + y + 1 2 = 9 đường tròn nào là ảnh của (C) qua phép tịnh tiến.
A. C 1
B. C 2
C. C 3
D. C 4
Đáp án C.
Phép tinh tiến không làm thay đổi bán kính đường tròn nên đường tròn (C3) là ảnh của (C) qua phép tịnh tiến.
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.