Những câu hỏi liên quan
PB
Xem chi tiết
CT
26 tháng 9 2019 lúc 5:13

Điều kiện Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

      tanx – 2.cotx + 1 = 0

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11

Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 (Thỏa mãn điều kiện).

Vậy phương trình có tập nghiệm

{Giải bài 3 trang 37 sgk Đại số 11 | Để học tốt Toán 11 + kπ; arctan(-2) + kπ} (k ∈ Z)

Bình luận (0)
MM
Xem chi tiết
TA
9 tháng 10 2022 lúc 14:57

a) cos3x =  \(cos\left(\pi-x-\dfrac{\pi}{3}\right)\)

<=> cos3x = \(cos\left(\dfrac{2\pi}{3}-x\right)\)

<=> 3x = \(\dfrac{2\pi}{3}-x\) hoặc 3x = \(\dfrac{-2\pi}{3}+x\)

<=> 4x = \(\dfrac{2\pi}{3}+k2\pi\) hoặc 2x = \(\dfrac{-2\pi}{3}+k2\pi\)

<=> x = \(\dfrac{\pi}{6}+\dfrac{k\pi}{2}\) hoặc x = \(\dfrac{-\pi}{3}+k\pi\)

<=> x = \(\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2};\dfrac{-\pi}{3}+k\pi;k\in Z\right\}\)

b ) Điều kiện sinx\(\ne0;cosx\ne0\)

<=> sin2x\(\ne0\) <=> x \(\ne\dfrac{k\pi}{2}\);k\(\in Z\)

tanx + cotx =0

<=> tan2x + tanx =0

<=> tanx(tanx+1)=0

<=> tanx=0 hoặc tanx = -1

<=> x=\(k\pi\) (loại) hoặc x = \(\dfrac{-\pi}{4}+k\pi\)

Vậy x = \(\dfrac{-\pi}{4}+k\pi;k\in Z\)

 

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 4 2017 lúc 11:14

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2018 lúc 13:12

cot⁡ x = 1 ⇔ cot⁡ x = cot⁡ π/4 ⇔ x = π/4 + kπ, k ∈ Z

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 7 2017 lúc 2:28

cotx - cot2x = tanx + 1 (1)

Điều kiện: sinx ≠ 0 và cosx ≠ 0. Khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)
MA
Xem chi tiết
US
Xem chi tiết
CQ
6 tháng 10 2020 lúc 11:53

\(2tan^2x-2\sqrt{3}tanx-3=0\)      

\(\orbr{\begin{cases}tanx=\frac{3+\sqrt{3}}{2}\\tanx=\frac{-3+\sqrt{3}}{2}\end{cases}}\)   

\(\orbr{\begin{cases}tanx=tana\\tanx=tanb\end{cases}}\)   Đặt \(tana=\frac{3+\sqrt{3}}{2};tanb=\frac{-3+\sqrt{3}}{2}\)   

\(\orbr{\begin{cases}x=a+k\pi\\x=b+k\pi\end{cases};k\in Z}\)    

\(\sqrt{3}cot^2x-\left(1+\sqrt{3}\right)cotx+1=0\)   

\(\orbr{\begin{cases}cotx=1\\cotx=\frac{\sqrt{3}}{3}\end{cases}}\)   

\(\Rightarrow\orbr{\begin{cases}tanx=1=tan\frac{\pi}{4}\\tanx=\sqrt{3}=tan\frac{\pi}{3}\end{cases}}\)   

\(\orbr{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\end{cases};k\in Z}\)

   

Bình luận (0)
 Khách vãng lai đã xóa
H24
25 tháng 5 2021 lúc 16:08

bang lon

Bình luận (0)
 Khách vãng lai đã xóa
QK
26 tháng 5 2021 lúc 15:17

haha yhe ma cung do 

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NL
18 tháng 7 2021 lúc 11:08

ĐKXĐ: \(x\ne k\dfrac{\pi}{2}\)

\(tanx+\dfrac{1}{tanx}=2\)

\(\Rightarrow tan^2x+1=2tanx\)

\(\Leftrightarrow\left(tanx-1\right)^2=0\)

\(\Leftrightarrow tanx=1\)

\(\Rightarrow x=\dfrac{\pi}{4}+k\pi\) (thỏa mãn)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 12 2017 lúc 8:24

Đối với những phương trình lượng giác chứa tanx, cotx, sin2x hoặc cos2x, ta có thể đưa về phương trình chứa cosx, sinx, sin2x, hoặc cos2x ngoài ra cũng có thể đặt ẩn phụ t = tanx để đưa về một phương trình theo t.

Cách 1: Điều kiện của phương trình:

sin2x ≠ 0 ⇔ cos2x ≠ 1 hoặc cos2x ≠ -1 (1)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Cách 2. Đặt t = tanx

Điều kiện t ≠ 0

Phương trình đã cho có dạng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)