Những câu hỏi liên quan
NK
Xem chi tiết
H24
Xem chi tiết
H24
16 tháng 3 2021 lúc 15:01

undefined

Bình luận (0)
H24
Xem chi tiết
TS
Xem chi tiết
NT
6 tháng 3 2022 lúc 8:50

Câu 1: D

Câu 2: A

Câu 3: B

Câu 4: A

Câu 5: C

Câu 6: D

Bình luận (0)
VH
6 tháng 3 2022 lúc 8:51

D

 A

 B

A

 C

D

Bình luận (1)
KS
6 tháng 3 2022 lúc 8:53

 1: D

2: A

 3: B

 4: A

 5: C

 6: D

 
Bình luận (0)
HN
Xem chi tiết
HP
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Bình luận (0)
HP
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Bình luận (0)
TL
Xem chi tiết
NT
18 tháng 1 2022 lúc 15:22

a:

Thay x=2 vào (1), ta được:

\(2^2-5\cdot2+6=0\)(đúng)

Thay x=2 vào (2), ta được:

\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)

b: (1)=>(x-2)(x-3)=0

=>S1={2;3}

 (2)=>\(x+2x^2+x-4x-2-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>S2={-2;1}

vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)

Bình luận (0)
DV
Xem chi tiết
NT
8 tháng 1 2022 lúc 21:52

a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn

Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn

c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Bình luận (0)
OO
Xem chi tiết
NT
17 tháng 11 2017 lúc 8:33

Các giải của các bài toán này là sử dụng tổng các delta em nhé

Bình luận (0)
VV
Xem chi tiết
NQ
13 tháng 1 2022 lúc 20:35

a. để phương trình nhận x=3 là nghiệm ta có 

\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)

b. Để phương trình có duy nhất 1 nghiệm âm ta có : 

\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)

c. Để phương trình đã cho vô nghiệm thì a=0

d. Phương trình đã cho không thể có vô số nghiệm thực.

Bình luận (0)
 Khách vãng lai đã xóa
VV
Xem chi tiết
VN
13 tháng 1 2022 lúc 20:40

32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)

Bình luận (0)
 Khách vãng lai đã xóa