Những câu hỏi liên quan
NH
Xem chi tiết
KN
8 tháng 2 2020 lúc 18:19

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2020 lúc 18:22

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3

Bình luận (0)
 Khách vãng lai đã xóa
LY
Xem chi tiết
H24
10 tháng 2 2021 lúc 9:57

undefined

Bình luận (0)
H24
Xem chi tiết
H24
16 tháng 3 2021 lúc 15:01

undefined

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 8 2017 lúc 17:23

Ta có:

2(a − 1)x − a(x − 1) = 2a + 3

⇔(a − 2)x = a + 3       (3)

Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.

Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.

Bình luận (0)
MN
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 3 2019 lúc 2:24

Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.

Suy ra, phương trình (3) có nghiệm x = 2

Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.

Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7

Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

Bình luận (0)
9D
Xem chi tiết
9D
10 tháng 4 2022 lúc 11:27

Các bạn giúp mình với ạ

Bình luận (0)
9D
10 tháng 4 2022 lúc 11:27

undefined

Bình luận (0)
NL
10 tháng 4 2022 lúc 11:40

a. Bạn tự giải

b. 

Phương trình có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(m-2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-1\) (1)

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne2\), khi đó:

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{4}\Rightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{4}\)

\(\Rightarrow4\left(x_1+x_2\right)=7x_1x_2\)

\(\Rightarrow\dfrac{8\left(m-1\right)}{m+1}=\dfrac{7\left(m-2\right)}{m+1}\)

\(\Rightarrow8\left(m-1\right)=7\left(m-2\right)\)

\(\Rightarrow m=-6< -1\) (ktm (1))

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

Bình luận (0)
9D
Xem chi tiết
NM
Xem chi tiết
GF
Xem chi tiết
NT
22 tháng 4 2023 lúc 15:07

a: Khi m=2 thì (1) sẽ là x^2+2x+1=0

=>x=-1

b:x1+x2=52

=>2m-2=52

=>2m=54

=>m=27

Bình luận (0)