Những câu hỏi liên quan
NN
Xem chi tiết
SA
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Bình luận (0)
NP
Xem chi tiết
NP
15 tháng 3 2021 lúc 20:46

ai giải mk vs ạ

 

Bình luận (0)
H24
15 tháng 3 2021 lúc 20:48
answer-reply-imageBn tham khảo nhé!
Bình luận (0)
UP
15 tháng 3 2021 lúc 20:50

undefined

Bình luận (0)
KH
Xem chi tiết
NQ
19 tháng 1 2021 lúc 0:59

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
H24
18 tháng 1 2021 lúc 13:17

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

Bình luận (0)
VL
Xem chi tiết
NT
1 tháng 4 2022 lúc 12:35

a, bạn tự giải 

b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)

Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)

bạn ktra lại đề nhé 

Bình luận (0)
LM
Xem chi tiết
NT
26 tháng 11 2023 lúc 8:28

a: Khi m=3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}3x-y=2\\2x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x-3y=6\\2x+3y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}11x=11\\3x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3x-2=3-2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx-y=2\\2x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\2x+m\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+2\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2m^2+5m}{m^2+2}-2=\dfrac{2m^2+5m-2m^2-4}{m^2+2}=\dfrac{5m-4}{m^2+2}\\x=\dfrac{2m+5}{m^2+2}\end{matrix}\right.\)

\(x+y=1-\dfrac{m^2}{m^2+2}\)

=>\(\dfrac{5m-4+2m+5}{m^2+2}=\dfrac{m^2+2-m^2}{m^2+2}=\dfrac{2}{m^2+2}\)

=>7m+1=2

=>7m=1

=>\(m=\dfrac{1}{7}\)

Bình luận (0)
LM
Xem chi tiết
AH
28 tháng 12 2023 lúc 13:20

Lời giải:
a. Với $m=2$ thì:

$2x-y=1$

$2x+y=9$

Cộng 2 phép tính với nhau thì:

$2x-y+2x+y=10$

$\Rightarrow 4x=10\Rightarrow x=2,5$

$y=2x-1=2.2,5-1=4$
Vậy hpt có nghiệm $(x;y)=(2,5; 4)$

b.

$2x-y=m-1$

$2x+y=4m+1$

$\Rightarrow (2x-y)+(2x+y)=m-1+4m+1$

$\Leftrightarrow 4x=5m$

$\Leftrightarrow x=\frac{5m}{4}$

$y=2x-(m-1)=\frac{5m}{2}-(m-1)=\frac{3m+2}{2}$

Khi đó:
$2x^2-3y=2$
$\Leftrightarrow \frac{25m^2}{8}-\frac{3(3m+2)}{2}=2$

$\Leftrightarrow 25m^2-36m-40=0$

$\Leftrightarrow m=\frac{18\pm 2\sqrt{331}}{25}$

Bình luận (0)
BH
Xem chi tiết
LM
Xem chi tiết
NT
6 tháng 1 2024 lúc 18:39

a: Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)

Bình luận (0)
HL
Xem chi tiết
NT
24 tháng 6 2021 lúc 21:11

a) Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)

Vậy: Khi m=-1 thì (x,y)=(1;4)

Bình luận (0)
NT
24 tháng 6 2021 lúc 21:25

b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)

Ta có: \(x^2+2y^2=18\)

\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)

\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)

\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)

\(\Leftrightarrow3m^2-8m+4=0\)

\(\Leftrightarrow3m^2-2m-6m+4=0\)

\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)

\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)

Bình luận (0)