Những câu hỏi liên quan
MN
Xem chi tiết
NT
17 tháng 6 2023 lúc 9:35

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

Bình luận (0)
LH
Xem chi tiết
PB
Xem chi tiết
CT
18 tháng 9 2017 lúc 18:10

Đáp án là B.

  A M ⊥ S B A M ⊥ B C do  B C ⊥ S A B ⇒ A M ⊥ S B C .

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 20:51

loading...

a) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot C{\rm{D}}\)

\(ABCD\) là hình vuông \( \Rightarrow A{\rm{D}} \bot C{\rm{D}}\)

\(\begin{array}{l} \Rightarrow C{\rm{D}} \bot \left( {SA{\rm{D}}} \right) \Rightarrow C{\rm{D}} \bot S{\rm{D}}\\ \Rightarrow d\left( {S,C{\rm{D}}} \right) = S{\rm{D}} = \sqrt {S{A^2} + A{{\rm{D}}^2}}  = a\sqrt 2 \end{array}\)

b) \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\)

\(ABCD\) là hình vuông \( \Rightarrow A{\rm{B}} \bot A{\rm{D}}\)

\( \Rightarrow A{\rm{D}} \bot \left( {SA{\rm{B}}} \right) \Rightarrow d\left( {D,\left( {SAB} \right)} \right) = A{\rm{D}} = a\)

c) Kẻ \(AH \bot S{\rm{D}}\left( {H \in S{\rm{D}}} \right)\).

\(C{\rm{D}} \bot \left( {SA{\rm{D}}} \right) \Rightarrow C{\rm{D}} \bot AH\)

\( \Rightarrow AH \bot \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = AH\)

Tam giác \(SAD\) vuông tại \(A\) có đường cao \(AH\)

\( \Rightarrow AH = \frac{{SA.A{\rm{D}}}}{{S{\rm{D}}}} = \frac{{a\sqrt 2 }}{2}\)

Vậy \(d\left( {A,\left( {SC{\rm{D}}} \right)} \right) = \frac{{a\sqrt 2 }}{2}\).

Bình luận (0)
VN
Xem chi tiết
PD
28 tháng 3 2016 lúc 13:32

A B C D S E K H

Gọi H là trung điểm của AB, suy ra \(SH\perp\left(ACBD\right)\)

Do đó \(SH\perp HD\)  ta có :

\(SH=\sqrt{SD^2-DH^2}=\sqrt{SD^2-\left(AH^2+AD^2\right)}=a\)

Suy ra \(V_{s.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{a^2}{3}\)

Gọi K là hình chiếu vuông góc của H trên BD và E là hình chiếu vuông góc của H lên SK. Ta có :

\(\begin{cases}BD\perp HK\\BD\perp SH\end{cases}\) \(\Rightarrow BH\perp\) (SHK)

=> \(BD\perp HE\) mà \(HE\perp SK\) \(\Rightarrow HE\perp\) (SBD)

Ta có : HK=HB.\(\sin\widehat{KBH}\)\(=\frac{a\sqrt{2}}{4}\)

Suy ra \(HE=\frac{HS.HK}{\sqrt{HS^2+HK^2}}=\frac{a}{3}\)

Do đó \(d\left(A:\left(SBD\right)\right)\)=2d(H; (SBD)) =3HE=\(\frac{2a}{3}\)

 

 

Bình luận (0)
TT
30 tháng 3 2016 lúc 19:45

cau 7 de thi toan thpt quoc gia 2015

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 5 2019 lúc 11:40

Đáp án D

Bình luận (0)
KP
Xem chi tiết
NT
20 tháng 4 2023 lúc 0:20

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 7 2017 lúc 13:13

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 4 2017 lúc 4:23

Đáp án D

Cách 1: Tư duy tự luận (Tính khoảng cách dựa vào hình chiếu)

Ta có 

A B // C D A B ⊄ S C D C D ⊂ S C D ⇒ A B // S C D ⇒ d B , S C D = d A ; S C D

Lại có C D ⊥ A D , A D ⊂ S A D C D ⊥ S A , S A ⊂ S A D A D ∩ S A = A ⇒ C D ⊥ S A D .

Trong mặt phẳng (SAD)  : Kẻ  A H ⊥ S D , H ∈ S D    thì C D ⊥ A H .

Suy ra A H ⊥ A C D ⇒ A H = d A ; S C D = d B ; S C D .

  Δ S A D vuông tại A nên 

1 A H 2 = 1 S A 2 + 1 A D 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Cách 2: Tư duy tự luận (Tinh khoảng cách qua công thức thể tích)

Thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a 2 = 2 a 3 3  (đvtt)

 

Do S Δ B C D = 1 2 S A B C D ⇒ V S . B C D = 1 2 V S . A B C D = a 3 3  (đvtt).

Ta có C D ⊥ S A D  (xem lại phần chứng minh ở cách 1)   ⇒ C D ⊥ S D ⇒ Δ S C D vuông tại D. Suy ra

S Δ S C D = 1 2 S D . C D = 1 2 S A 2 + A D 2 . C D = 1 2 . a . 2 a 2 + a 2 = a 2 5 2

 (đvdt)

Mặt khác 

V S . B C D = V B . S C D = 1 3 d B ; S C D . S Δ S C D ⇒ d B ; S C D = 3 V S . B C D S Δ S C D = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Bình luận (0)