PB

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; S A ⊥ A B C D  và S A = 2 a . Tính khoảng cách d từ điểm B đến mặt phẳng (SCD).

A. d = a 5 5 .

B. d = a .

C. d = 4 a 5 5 .

D. d = 2 a 5 5 .

CT
9 tháng 4 2017 lúc 4:23

Đáp án D

Cách 1: Tư duy tự luận (Tính khoảng cách dựa vào hình chiếu)

Ta có 

A B // C D A B ⊄ S C D C D ⊂ S C D ⇒ A B // S C D ⇒ d B , S C D = d A ; S C D

Lại có C D ⊥ A D , A D ⊂ S A D C D ⊥ S A , S A ⊂ S A D A D ∩ S A = A ⇒ C D ⊥ S A D .

Trong mặt phẳng (SAD)  : Kẻ  A H ⊥ S D , H ∈ S D    thì C D ⊥ A H .

Suy ra A H ⊥ A C D ⇒ A H = d A ; S C D = d B ; S C D .

  Δ S A D vuông tại A nên 

1 A H 2 = 1 S A 2 + 1 A D 2 = 1 2 a 2 + 1 a 2 = 5 4 a 2 ⇒ A H = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Cách 2: Tư duy tự luận (Tinh khoảng cách qua công thức thể tích)

Thể tích khối chóp S.ABCD là V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a 2 = 2 a 3 3  (đvtt)

 

Do S Δ B C D = 1 2 S A B C D ⇒ V S . B C D = 1 2 V S . A B C D = a 3 3  (đvtt).

Ta có C D ⊥ S A D  (xem lại phần chứng minh ở cách 1)   ⇒ C D ⊥ S D ⇒ Δ S C D vuông tại D. Suy ra

S Δ S C D = 1 2 S D . C D = 1 2 S A 2 + A D 2 . C D = 1 2 . a . 2 a 2 + a 2 = a 2 5 2

 (đvdt)

Mặt khác 

V S . B C D = V B . S C D = 1 3 d B ; S C D . S Δ S C D ⇒ d B ; S C D = 3 V S . B C D S Δ S C D = 2 a 5

Vậy khoảng cách từ điểm B đến mặt phẳng (SCD) là  d = 2 a 5 5   .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết