Những câu hỏi liên quan
HN
Xem chi tiết
NT
1 tháng 11 2023 lúc 22:33

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot\widehat{BOC}\)

=>\(\widehat{BOC}=75^0:\dfrac{1}{2}=150^0\)

 

Diện tích tam giác OBC là:

\(S_{OBC}=\dfrac{1}{2}\cdot OB\cdot OC\cdot sinBOC\)

\(=\dfrac{1}{2}\cdot1\cdot1\cdot sin150=\dfrac{1}{4}\)

Bình luận (0)
NK
Xem chi tiết
MH
5 tháng 2 2022 lúc 10:00

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (3)
MH
5 tháng 2 2022 lúc 19:39

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}\left(b.c\right)^2}=\dfrac{a.b^2\dfrac{\left(a+2b\right)}{2}}{b^4}=\dfrac{a.b^2\left(a+2b\right)}{2b^4}=\dfrac{a\left(a+2b\right)}{2b^2}\)

\(=\dfrac{b\sqrt{2}\left(b\sqrt{2}+2b\right)}{2b^2}=\dfrac{b^2\sqrt{2}\left(\sqrt{2}+2\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

Bình luận (1)
NC
25 tháng 7 2022 lúc 20:56

Có câu trả lời là được mà

 

Bình luận (0)
MT
Xem chi tiết
AL
Xem chi tiết
TD
14 tháng 1 2017 lúc 17:32

Kiểm tra lại đề nha bạn. Chắc chắn là thiếu giả thiết rồi đó.

Bình luận (0)
YO
Xem chi tiết
PB
Xem chi tiết
CT
28 tháng 3 2019 lúc 15:36

Đáp án A.

Áp dụng định lý Sin, ta có 2 R = A B sin A C B ^ ⇒ A B = 2 R . sin 60 ° = R 3 .  

Và 2 R = B C sin B A C ^ ⇒ B C = 2 3 + 1 2 .  Xét  ∆ B H C  vuông tại H, ta có

sin A C B ^ = B H B C ⇒ B H = sin 60 ° . B C = 6 + 3 2 4 R .  

cos A C B ^ = C H B C ⇒ C H = cos 60 ° . B C = 6 + 2 4 R .  

Khi quay  ∆ B H C  quanh trục AC ta được hình nón tròn xoay có bán kính đường tròn đáy r = BH và chiều cao h = C H = 6 + 2 4 R .  Vậy  S x q = πrl = 3 + 2 3 2 πR 2

Bình luận (0)
DG
Xem chi tiết
PT
Xem chi tiết
BT
Xem chi tiết
AH
29 tháng 7 2021 lúc 23:18

Lời giải:
Gọi $M$ là trung điểm của $BC$. Do $BC$ cố định nên $M$ cố định.

Qua $G$ kẻ $GI\parallel AO$ với $I\in OM$

Theo Talet thì $\frac{GI}{AO}=\frac{MI}{MO}=\frac{GM}{MA}=\frac{1}{3}$
Mà $M,O$ cố định nên $I$ cố định.

$\frac{GI}{AO}=\frac{1}{3}\Rightarrow GI=\frac{AO}{3}=\frac{R}{3}$

Vậy trọng tâm $G$ luôn thuộc đường tròn $(I, \frac{R}{3})$ cố định.

 

Bình luận (0)
AH
29 tháng 7 2021 lúc 23:24

Hình vẽ:

Bình luận (0)
HB
Xem chi tiết
TA
15 tháng 3 2022 lúc 21:42

lx

Bình luận (1)
HH
15 tháng 3 2022 lúc 21:42

lỗi 

Bình luận (2)