Những câu hỏi liên quan
DH
Xem chi tiết
AH
30 tháng 9 2021 lúc 10:27

Lời giải:

Áp dụng BĐT AM-GM:
$3x+\frac{16}{3}\ge 8\sqrt{x}$

$4y+4\geq 8\sqrt{y}$

$6z+\frac{8}{3}\geq 8\sqrt{z}$

Cộng theo vế: $P+12\geq 8(\sqrt{x}+\sqrt{y}+\sqrt{z})=24$

$\Rightarrow P\geq 12$
Vậy $P_{\min}=12$ khi $(x,y,z)=(\frac{16}{9}, 1, \frac{4}{9})$

$P+

Bình luận (0)
DH
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 12 2021 lúc 23:55

\(x+\sqrt{3x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{\left(x+y\right)\left(z+x\right)}\ge x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}\)

\(=x+\sqrt{xz}+\sqrt{xy}=\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+zx}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế với vế ta có đpcm

Bình luận (0)
NV
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết
AX
Xem chi tiết
TP
Xem chi tiết
PN
26 tháng 4 2021 lúc 20:22

Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có 

\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)

\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
26 tháng 4 2021 lúc 19:36

bạn sửa lại đề đi ạ

Bình luận (0)
 Khách vãng lai đã xóa
TP
26 tháng 4 2021 lúc 20:09

hh
cục đó \(\le1\)

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NT
18 tháng 9 2017 lúc 22:25

áp dụng bđt cô si ta có:

\(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)

\(\Rightarrow A\ge\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{y^2+z^2}{2}}+\sqrt{\frac{z^2+x^2}{2}}\)

theo bunhia thì \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;2\left(y^2+z^2\right)\ge\left(y+z\right)^2;2\left(z^2+x^2\right)\ge\left(z+x\right)^2\)

\(\Rightarrow A\ge\sqrt{\frac{\left(x+y\right)^2}{4}}+\sqrt{\frac{\left(y+z\right)^2}{4}}+\sqrt{\frac{\left(z+x\right)^2}{4}}=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Vậy \(Min_A=1\Leftrightarrow x=y=z=\frac{1}{3}\)

Bình luận (0)
NM
Xem chi tiết
HN
21 tháng 11 2016 lúc 18:06

Áp dụng BĐT \(\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\) (bạn tự chứng minh)

Ta có \(P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{z^2+x^2}}{y}\ge\frac{\sqrt{2}}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)

\(=\frac{\sqrt{2}}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{\sqrt{2}}{2}\left(2+2+2\right)=3\sqrt{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x=y=z\\x,y,z>0\end{cases}}\)

Vậy min P = \(3\sqrt{2}\) khi x = y = z

Bình luận (0)