Giải tam giác vuông PAN vuông tại P, biết góc A bằng 32 độ, AP = 8cm.
Giải tam giác vuông PAN vuông tại P, biết góc A bằng 320, AP = 8cm.
b) Ta có:
\(\widehat{B}=180^o-90^o-42^o=48^o\)
Xét tam giác ABC vuông tại A ta có:
\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)
\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\)
Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)
\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\)
1/ Một tam giác vuông cân có cạnh huyền bằng 2dm.Tính độ dài mỗi cạnh góc vuông
2/Cho tam giác ABC có AH vuông góc với BC,AB=8cm,AC=13cm,HB=4cm.Tính độ dài HC
3/Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AH(H nằm giữa Ava2 C).Tính độ dài BC, biết HA=1cm,HC=8cm
4/ Trên mặt phẳng tọa độ Oxy, vẽ điểm A có tọa độ(3;4). Tính độ dài OA
5/Tam giác có độ dài 3 cạnh bằng$cm,7cm,8cm có là tam giác vuông hay không? Vì Sao?
Mình Ko biết làm mấy bạn giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
(Giải tầm giác vuông biết độ dài một cạnh và một góc nhọn)cho tam giác ABC vuông tại C có BC bằng 4cm và A bằng 30 độ a.hãy giải tam giác ABC B.tính tỉ số lượng giác của GÓC A
a: \(\widehat{B}=60^0\)
AB=8cm
\(AC=4\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A,Giải tam giác ABC biết
a,AC=15cm góc C=35 độ
b,AB=8cm,góc C=50 độ
a: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=55^0\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(BC=15:sin55\simeq18.31\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}\simeq10,5\left(cm\right)\)
b: ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}=90^0-50^0=40^0\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(BC=8:sin50\simeq10,44\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq6,71\left(cm\right)\)
Cho tam giác ABC vuông tại B, biết AB=8cm, góc A bằng 67 độ. Cạnh làm tròn đến chữ số thập phân thứ 2
Ta có: ΔABC vuông tại B
nên \(\widehat{A}+\widehat{C}=90^0\)
hay \(\widehat{C}=23^0\)
Xét ΔABC vuông tại B có
\(AC=\dfrac{AB}{\cos67^0}\)
\(\Leftrightarrow AC\simeq20,47\left(cm\right)\)
\(\Leftrightarrow BC\simeq18,84\left(cm\right)\)
cho tam giác vuông ABC , biết độ dài cạnh huyền bằng 8cm , hiệu 2 cạnh góc vuông bằng 4cm . Tính diện tích tam giác vuông ABC
Gọi độ dài cạnh góc vuông thứ nhất là x(cm)
=>Độ dài cạnh góc vuông thứ hai là x+4(cm)
Độ dài cạnh huyền là 8cm nên ta có: \(x^2+\left(x+4\right)^2=8^2\)
=>\(x^2+x^2+8x+16-64=0\)
=>\(2x^2+8x-48=0\)
=>\(x^2+4x-24=0\)
=>\(x^2+4x+4-28=0\)
=>\(\left(x+2\right)^2=28\)
=>\(\left[{}\begin{matrix}x+2=2\sqrt{7}\\x+2=-2\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{7}-2\left(nhận\right)\\x=-2\sqrt{7}-2\left(loại\right)\end{matrix}\right.\)
Độ dài cạnh góc vuông thứ hai là:
\(2\sqrt{7}-2+4=2\sqrt{7}+2\left(cm\right)\)
Diện tích tam giác vuông ABC là:
\(\dfrac{1}{2}\left(2\sqrt{7}-2\right)\left(2\sqrt{7}+2\right)\)
\(=\dfrac{1}{2}\left(28-4\right)\)
\(=\dfrac{1}{2}\cdot24=12\left(cm^2\right)\)
Cho tam giác AMN có \(\widehat{m}\)=\(\widehat{n}\)= 49 độ. Gọi AP là tia đối của tia AM. Kẻ tia Ax nằm bên trong góc PAN và Ax // MN.
a) Chứng minh Ax là tia phân giác của góc PAN
b) Từ N kẻ NE // AM (E thuộc Ax). So sánh các cặp góc của hai tam giác AMN và NEA
c) Qua M kẻ đường thẳng d vuông góc vs MN. Từ A kẻ đường thẳng vuông góc vs đường thẳng d tại điểm B. Chứng minh ba điểm A, B, E thẳng hàng
Mọi người làm đúng giúp mình nhé