Những câu hỏi liên quan
NH
Xem chi tiết
H24
Xem chi tiết
US
12 tháng 11 2021 lúc 16:43

Dễ thấy MN là đường trung bình của tam giác ABC 

Do đó MN//AC và MN=1/2.AC

Tương tự: DF là đtb của tam giác AHC. Suy ra DF//AC,DF=1/2.AC

Mặt khác: góc MDH+góc CDH=góc BHC+góc HAC=90^0

Do đó tứ giác MNFD là hcn.

chứng minh tương tự ta cũng sẽ có:MEFP là hcn.

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
KT
27 tháng 9 2018 lúc 23:28

Dễ thấy MN là đường trung bình của tam giác ABC 

Do đó MN//AC và MN=1/2.AC

Tương tự: DF là đtb của tam giác AHC. Suy ra DF//AC,DF=1/2.AC

Mặt khác: góc MDH+góc CDH=góc BHC+góc HAC=90^0

Do đó tứ giác MNFD là hcn.

chứng minh tương tự ta cũng sẽ có:MEFP là hcn.

P/s: Do mới xài nên chả biết up cái ảnh ở đâu nên bạn tự vẽ hình nhé 

Bình luận (0)
DH
Xem chi tiết
KD
Xem chi tiết
TM
Xem chi tiết
TD
28 tháng 2 2020 lúc 9:57

bài 3

A B C D E M N K K' x I O

Gọi giao điểm của EM với AC là K' ( K' \(\in\)AC )

Ta sẽ chứng minh K' \(\equiv\)

Thật vậy, gọi giao điểm AC và MN là O ; K'N cắt DC tại I 

dễ thấy O là trung điểm MN

do MN // EI \(\Rightarrow\frac{MO}{EC}=\frac{K'O}{K'C}=\frac{ON}{CI}\)\(\Rightarrow EC=CI\)

\(\Delta NEI\)có NC là đường cao vừa là trung tuyến nên cân tại N

\(\Rightarrow\)NC là đường phân giác của \(\widehat{ENI}\)

Mà \(\widehat{K'NE}+\widehat{ENI}=180^o\) có \(NM\perp NC\)nên NM là  đường phân giác \(\widehat{K'NE}\)( 1 )

mặt khác : NM là đường phân giác \(\widehat{KNE}\) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(K'\equiv K\)hay A,K,C thẳng hàng

Bình luận (0)
 Khách vãng lai đã xóa
TD
28 tháng 2 2020 lúc 10:16

A B C H M E F D

Trên tia đối tia HC lấy D sao cho HD = HC

Tứ giác DECF có DH = HC ; EH = HF nên là hình bình hành

\(\Rightarrow\)DE // CF 

\(\Rightarrow\)DE \(\perp\)CH ; BE \(\perp\)DH

\(\Rightarrow\)E là trực tâm tam giác DBH \(\Rightarrow HE\perp BD\)

Xét \(\Delta DBC\)có DH = HC ; BM = MC nên MH là đường trung bình 

\(\Rightarrow\)MH // BD

\(\Rightarrow\)MH \(\perp EF\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
28 tháng 2 2020 lúc 20:49

bài 5 :

A B C P N M K J I L

gọi L là giao điểm của CI và NK

từ \(S_{ANI}=S_{IJK}\) \(\Rightarrow S_{ANI}+S_{AIJ}=S_{IJK}+S_{AIJ}\Rightarrow S_{NAJ}=S_{KAJ}\)

Ta nhận thấy \(\Delta NAJ\)và \(\Delta KAJ\)có chung cạnh AJ nên khoảng cách từ N và K tới AJ bằng nhau 

\(\Rightarrow NK//AJ\)

xét hình thang AJKN có C là giao điểm của AN và JK, I là giao điểm của AK và JN 

theo bổ đề hình thang, CI cắt NK tại trung điểm của NK hay L là trung điểm của NK

Suy ra khoảng cách từ N đến CI bằng khoảng cách từ K đến CI ( cái này bạn tự c/m bằng cách hạ đường cao xuống xong xét tam giác )

\(\Rightarrow S_{CIN}=S_{CIK}\) 

Mà \(S_{AIN}=S_{CKM}\)\(\Rightarrow S_{CIM}=S_{CIA}\Rightarrow AI=IM\) 

\(\Rightarrow S_{BIA}=S_{BIM}\)

\(\Leftrightarrow S_{BPJ}+S_{APJI}=S_{IJK}+S_{BJKM}\Leftrightarrow S_{APJI}=S_{BJKM}\)

tương tự : ....

xong rồi suy ra 3 tam giác bằng nhau

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
ND
Xem chi tiết
MN
Xem chi tiết