Biết Ax // Cy
Chứng minh \(\widehat{xAB}+\widehat{ABC}-\widehat{BCy}=180^{\sigma}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\widehat{xAB}=125°,\widehat{ABC}=100°,\widehat{BCY}=130°\). Chứng minh rằng hai đường thẳng Ax và Cy cắt nhau
Biết \(\widehat{xAB}=125°,\widehat{ABC}=100°,\widehat{BCy}=130°\) . Chứng tỏ rằng hai đường thẳng Ax và Cy cắt nhau
1.Cho hình 16:
a) Cho biết \(Ax//Cy.So\) \(sánh \)\(\widehat{ABC}\) với \(\widehat{A}\) và \(\widehat{C}\)
b) Cho biết \(\widehat{ABC}\)=\(\widehat{A}\) và\(\widehat{C}\) . Chứng tỏ rằng \(Ax//\) Cy
Cho \(\Delta ABC\) có \(\widehat{A}=40^{\text{°}};\widehat{B}=100^{\text{°}}.\) Từ B kẻ đường thẳng vuông góc với AC tại H.
a) Tính \(\widehat{C}\)
b) Chứng tỏ rằng BH là tia phân giác của \(\widehat{ABC}\)
c) Trên nửa mặt phẳng không chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song với BH. Tính \(\widehat{xAB}+\widehat{ABC}+\widehat{BCy}\)
a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác
Suy ra góc C = 40 độ
b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ
Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ
Vì góc ABH = góc CAH
nên BH là phân giác của góc ABH)
c) vì Ax song song với BH
Cy song song với BH
nên Ax vuông góc với AC, Cy vuông góc với AC
Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ
Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ
hình như sai rồi
Cho tứ giác ABCD có \(\widehat {DAB} = \widehat {BC{\rm{D}}};\widehat {ABC} = \widehat {C{\rm{D}}A}\). Kẻ tia Ax là tia đối của tia AB. Chứng minh:
a) \(\widehat {ABC} + \widehat {DAB} = {180^o}\)
b) \(\widehat {xA{\rm{D}}} = \widehat {ABC};AC//BC\)
c) Tứ giác ABCD là hình bình hành.
a, Tứ giác ABCD có:
\(\widehat {ABC} + \widehat {BCD} + \widehat {CDA} + \widehat {DAB} = {360^0}\)
\(\widehat {ABC} + \widehat {DAB} + \widehat {ABC} + \widehat {DAB} = {360^0}\)(do \(\widehat {DAB} = \widehat {BCD};\widehat {ABC} = \widehat {CDA}\))
\(\begin{array}{l}2\widehat {ABC} + 2\widehat {DAB} = {360^0}\\\widehat {ABC} + \widehat {DAB} = \dfrac{{{{360}^0}}}{2} = {180^0}\end{array}\)
b, Ta có: \(\widehat {xAD} + \widehat {DAB} = {180^0}\)(do tia Ax là tia đối của tia AB)
Nên
\(\begin{array}{l}\widehat {xAD} + \widehat {DAB} = \widehat {ABC} + \widehat {DAB}\\ \Rightarrow \widehat {xAD} = \widehat {ABC}\end{array}\)
Suy ra AD//BC (hai góc đồng vị bằng nhau)
c, Vì AD//BC \( \Rightarrow \widehat {ADB} = \widehat {DBC}\) (2 góc so le trong)
Xét \(\Delta A{\rm{D}}B\) có \(\widehat {ABD} = {180^0} - \widehat {ADB} - \widehat {DAB} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 1 \right)\)
( vì \(\widehat {ADB} = \widehat {DBC};\widehat {DAB} = \widehat {BCD})\)
Xét \(\Delta CDB\) có: \(\widehat {BDC} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 2 \right)\)
Từ (1), (2) suy ra \(\widehat {ABD} =\widehat {BDC}\)
Xét \(\Delta ADB\) và \(\Delta BCD\)có:
\(\left. \begin{array}{l}DBchung\\\widehat {ABD} = \widehat {BDC}\\\widehat {ABD} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta A{\rm{D}}B = \Delta C{\rm{D}}B \Rightarrow A{\rm{D}} = BC,AB = CB\)
Suy ra tứ giác ABCD có cặp cạnh đối bằng nhau nên ABCD là hình bình hành.
1) Cho \(\widehat{xoy}\)=65°. Trên tia Ox lấy điểm A. Kẻ tia Az sao cho \(\widehat{xAz}\)=65°. Trên tia Az lấy điểm B. Kẻ tia Bt cắt tia Oy tại C sao cho \(\widehat{CBz}\)=115°. Kẻ AH⊥Oy;CK⊥Az
a) Chứng minh Az//Oy
b) Chứng minh AH//CK
c) Tính \(\widehat{OAH}\)
2) Cho ΔABC có \(\widehat{A}\)=40°;\(\widehat{B}\)=100°. Từ B kẻ đường thẳng vuông góc với AC tại H.
a) Tính \(\widehat{C}\)
b) Chứng tỏ rằng BH là tia phân giác của \(\widehat{ABC}\)
c) Trên nửa mặt phẳng không chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song với BH. Tính \(\widehat{xAB}+\widehat{ABC}+\widehat{BCy}\)
3) Cho \(\Delta ABC\) có AB=AC. Gọi H là trung điểm của cạnh BC. Chứng minh:
a) \(\widehat{B}=\widehat{C}\)
b) AH là tia phân giác của \(\widehat{BAC}\)
c) AH là trung trực của BC
d) Cho \(\widehat{C}=50^{\text{ °}}.\) Tính \(\widehat{BAC}\)
Mình làm nốt câu d) bài 3 nhé.
d) Vì \(\widehat{B}=\widehat{C}\left(cmt\right)\)
Mà \(\widehat{C}=50^0\left(gt\right)\)
=> \(\widehat{B}=\widehat{C}=50^0.\)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).
=> \(\widehat{A}+50^0+50^0=180^0\)
=> \(\widehat{A}+100^0=180^0\)
=> \(\widehat{A}=180^0-100^0\)
=> \(\widehat{A}=80^0.\)
Hay \(\widehat{BAC}=80^0.\)
Vậy \(\widehat{BAC}=80^0.\)
Chúc bạn học tốt!
Hình bạn tự vẽ nha!
Bài 3:
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại \(A.\)
=> \(\widehat{B}=\widehat{C}\) (tính chất tam giác cân).
b) Xét 2 \(\Delta\) \(ABH\) và \(ACH\) có:
\(AB=AC\left(gt\right)\)
\(BH=CH\) (vì H là trung điểm của \(BC\))
Cạnh AH chung
=> \(\Delta ABH=\Delta ACH\left(c-c-c\right).\)
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
=> \(AH\) là tia phân giác của \(\widehat{BAC}.\)
c) Vì \(\Delta ABC\) cân tại \(A\left(cmt\right)\)
Có \(AH\) là đường phân giác (cmt).
=> \(AH\) đồng thời là đường trung trực của \(\Delta ABC.\)
=> \(AH\) là đường trung trực của \(BC.\)
Chúc bạn học tốt!
1(g là góc)
Ta có : góc \(xAz=65\) độ(GT)
góc xoy = 65 độ(GT)
mà 2 góc trên ở vị trí đồng vị
Vậy Az // Oy
Ta có AH \(\perp\) Oy(GT)
CK\(\perp\)Az (GT)
mà Az // Oy
Vậy AH // CK (đpcm)
#kido
PS : Lát mình vẽ hình cho
Trong hình vẽ bên , cho biết \(\widehat{A}+\widehat{B}+\widehat{C}=360^0\) chứng minh Ax // Cy
Kẻ Bz // Ax
Bz // Cy
ta có Ax // Bz//Cy=>Ax//Cy (đpcm)
Ta có hình vẽ:
Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz
Ta có: BAx + ABz = 180o (trong cùng phía)
ABz + CBz = ABC
Lại có: BAx + ABC + BCy = 360o (gt)
=> BAx + ABz + CBz + BCy = 360o
=> 180o + CBz + BCy = 360o
=> CBz + BCy = 360o - 180o
=> CBz + BCy = 180o
Mà CBz và BCy là 2 góc trong cùng phía
=> Bz // Cy
Mà Ax // Bz
=> Bz // Cy (đpcm)
Cho Hình 3.42, biết rằng Ax//Dy, \(\widehat A = 90^\circ ,\widehat {BCy} = 50^\circ \). Tính số đo các góc ADC và ABC.
Vì Ax // Dy, mà AD \( \bot \) Ax nên AD \( \bot \) Dy. Do đó, \(\widehat{ADC}=90^0\)
Vì Ax // Dy nên \(\widehat {ABC} = \widehat {BCy}\) ( 2 góc so le trong), mà \(\widehat {BCy} = 50^\circ \Rightarrow \widehat {ABC} = 50^\circ \)
Vậy \(\widehat{ADC}=90^0; \widehat {ABC} = 50^\circ \)
Cho hình vẽ biết góc xAB + góc ABC + góc BCy = 360⁰ Chứng minh Ax//Cy
Hình 14 :
Cho biết \(\widehat{A}+\widehat{B}+\widehat{C}=360^0\)
Chứng minh rằng Ax // Cy ?