1) \(4^{x+1}=64^x\)
2) \(\dfrac{x}{2}-\dfrac{x}{5}=1+x\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
Tìm x biết :
a)\(\dfrac{x+1}{2x+1}=\dfrac{\dfrac{1}{2}x+2}{x+3}\)
b) \(x^2+5x=0\)
c)\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
a: \(\Leftrightarrow\dfrac{x+1}{2x+1}=\dfrac{x+4}{2x+6}\)
=>(x+1)(2x+6)=(2x+1)(x+4)
\(\Leftrightarrow2x^2+6x+2x+6=2x^2+8x+x+4\)
=>9x+4=8x+6
=>x=2
b: \(x^2+5x=0\)
=>x(x+5)=0
=>x=0 hoặc x=-5
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
rút gọn phân thức
a.\(\dfrac{5x-15}{4x+4}:\dfrac{x^2-9}{x^2+2x+1}\)
b.\(\dfrac{6x+48}{7x-7}:\dfrac{x^2-64}{x^2-2x+1}\)
c.\(\dfrac{4x-24}{5x+5}:\dfrac{x^2-36}{x^2+2x+1}\)
d.\(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
a.\(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\) : \(\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x+1\right)^2}\)
= \(\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\). \(\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}\)
= \(\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)
b. \(\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\). \(\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}\)
= \(\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
c.Tương tự hai câu trên nka!!
d. (\(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2-x}{x+1}\)).(\(\dfrac{x}{x-1}\))
=( \(\dfrac{1}{x\left(x+1\right)}\)-\(\dfrac{2x-x^2}{x\left(x+1\right)}\)). ....
= \(\dfrac{\left(1-x\right)^2}{x\left(x+1\right)}\). ...
= \(\dfrac{x-1}{x+1}\)
Lê Cẩm TúThiên ThảoPhạm Thái DươnMai LinhgGuyoSky SơnTùngKhôi Bùi Mysterious PersonPhong ThầnPhùng Khánh Linhtran nguyen baNguyễn Xuân Sángo quanDƯƠNG PHAN KHDũng NguyễnÁNH DƯƠNGlê thị hương giang
c: \(=\dfrac{4\left(x-6\right)}{5\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{\left(x-6\right)\left(x+6\right)}=\dfrac{4\left(x+1\right)}{5\left(x+6\right)}\)
a: \(=\dfrac{5\left(x-3\right)}{4\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{5\left(x+1\right)}{4\left(x+3\right)}\)
b: \(=\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}=\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
Tìm hai số x,y biết
a/\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2-3z^2=-650\)
b/\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6};5z-3x-4y=50\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)
bài 1: rut gọn
a, \(\sqrt{5\left\{1-a\right\}^2}\) với a>1
b,\(\sqrt{\dfrac{9\left[a^2+2a+1\right]}{144}}\)
c,\(\dfrac{2}{x-5}\times\sqrt{\dfrac{x^2\times10x+25}{64}}\)
d \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) với x≥0 và x≠1
a: \(\sqrt{5\left(1-a\right)^2}\)
\(=\sqrt{5\left(a-1\right)^2}\)
\(=\sqrt{5}\cdot\sqrt{\left(a-1\right)^2}\)
\(=\sqrt{5}\left|a-1\right|\)
\(=\sqrt{5}\left(a-1\right)\)(do a>1 nên a-1>0)
b: \(\sqrt{\dfrac{9\left|a^2+2a+1\right|}{144}}\)
\(=\sqrt{\dfrac{9}{144}\cdot\left|a^2+2a+1\right|}\)
\(=\sqrt{\dfrac{1}{16}\cdot\left|\left(a+1\right)^2\right|}\)
\(=\sqrt{\dfrac{1}{16}}\cdot\sqrt{\left|\left(a+1\right)^2\right|}\)
\(=\dfrac{1}{4}\cdot\left(a+1\right)^2\)
c:
ĐKXĐ: x<>5
Sửa đề:\(\dfrac{2}{x-5}\cdot\sqrt{\dfrac{x^2-10x+25}{64}}\)
\(=\dfrac{2}{x-5}\cdot\sqrt{\dfrac{\left(x-5\right)^2}{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\sqrt{\left(x-5\right)^2}}{\sqrt{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\left|x-5\right|}{8}\)
\(=\pm\dfrac{1}{4}\)
d: \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x}-\sqrt{x}\cdot1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\)
1. \(\left|\dfrac{-3}{5}+\dfrac{1}{7}\right|+\dfrac{5}{7}:\left(\dfrac{-5}{2}\right)\)
2. \(\dfrac{64}{4^{\left(x+1\right)}}=4\) với (x ϵ N)
1: \(=\left|\dfrac{-21+5}{35}\right|+\dfrac{5}{7}\cdot\dfrac{-2}{5}\)
\(=\dfrac{16}{35}+\dfrac{-2}{7}=\dfrac{16}{35}-\dfrac{10}{35}=\dfrac{6}{35}\)
2: =>4^x+1=16
=>x+1=2
=>x=1
Tìm x, biết
a)\(\dfrac{1}{2}\)x\(x\)-\(\dfrac{7}{3}\)=\(\dfrac{-5}{6}\)+\(\dfrac{3}{4}\)x\(x\)
b)\(\dfrac{4}{5}\)x\(x\)-\(\dfrac{6}{5}\)=\(\dfrac{1}{2}\)+\(\dfrac{3}{2}\)x\(x\)
c)\(\dfrac{2}{5}\)x(3x\(x\)+\(\dfrac{3}{4}\))=\(1\dfrac{1}{5}\)-\(\dfrac{1}{3}\)x\(x\)
d)2x(3x\(x \)+\(\dfrac{3}{4}\))+\(\dfrac{4}{5}\)=\(\dfrac{1}{2}\)-2x\(x\)
giúp mình giải bài toán trên với. Mình cảm ơn rất nhiều
a: =>1/2x-3/4x=-5/6+7/3
=>-1/4x=14/6-5/6=3/2
=>x=-3/2*4=-6
b: =>4/5x-3/2x=1/2+6/5
=>-7/10x=17/10
=>x=-17/7
c: =>6/5x+6/20=6/5-1/3x
=>6/5x+1/3x=6/5-3/10=12/10-3/10=9/10
=>x=27/46
d: =>6x+3/2+4/5=1/2-2x
=>8x=1/2-3/2-4/5=-1-4/5=-9/5
=>x=-9/40