tim tap xac dinh \(\frac{1}{\sqrt{x-2\sqrt{x-1}}}\)
tim tap xac dinh cua ham so
y=\(\sqrt{\frac{3-3X}{-X^2-2X+15}-1}\)
1) Tim tap xac dinh D cua ham so y = \(\sqrt{6-x}+\dfrac{2x+1}{1+\sqrt{x-1}}\)
A. D = R B. D = ( -∞; 6] C. D = (1; +∞ ) D. [1;6]
Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$
Đáp án D
P = \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}\) a) Tim dieu kien xac dinh cua P
đkxđ
\(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}-2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\\x\ne4\end{matrix}\right.\)
vậy \(x\ge0;x\ne4;x\ne9\)là đkxđ củaP
tim tap xac dinh:\(y=\sqrt{\dfrac{2cosx+3}{sinx+1}}\)
y xác định \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2cosx+3}{sinx+1}\ge0\left(1\right)\\sinx+1\ne0\left(2\right)\end{matrix}\right.\)
`(1) <=> 2cosx+3>=sinx+1`
`<=>2cosx+2>=sinx `
Vì `2cosx+2>sin^2x+cos^2x>=sinx`
`=> 2cosx+2>=sinx forall x`
`(2) <=> x \ne -π/2 +k2π`
Vậy `D=RR \\ {-π/2 + k2π} (k \in ZZ)`.
1) Tim tat ca cac gia tri thuc cua tham so m de ham so y = \(\sqrt{m-2x}-\sqrt{x+1}\) co tap xac dinh la 1 doan tren truc so
A. m < -2 B. m > 2 C. m > \(\dfrac{-1}{2}\) D. m > -2
Bai 1 : Tim m de ham do sau xac dinh \(\forall x\in R\)
y=\(\sqrt{sin^4x+cos^4x-2msinxcosx}\)
Bai 2 Tim tap xac dinh cua ham so sau
a) y= \(\sqrt{2+tan^2x-cosx}\)
b) y=\(\sqrt{sin2x-sinx+3}\)
1.
\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)
\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)
\(=-\frac{1}{2}sin^22x-m.sin2x+1\)
Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)
\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)
\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)
\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút
\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)
TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)
TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)
2. ĐKXĐ:
a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)
(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)
b. \(sin2x-sinx+3\ge0\)
\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)
Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)
\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R
rut gon M
\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
xac dinh x de m dat gia tri nho nhat
\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\)\(\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\left(\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\sqrt{x}^3-1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)\(.\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\left(\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}}{\sqrt{x}-1}\right).\)\(\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2x+\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(2x+\sqrt{x}-1\right)}\)\(-\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(2x+\sqrt{x}-1\right)}\)\(+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)\(+\frac{\sqrt{x}}{2\sqrt{x}+1}\)
\(=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}+1}\)
Khổ nỗi đến đây tắc, cậu nghĩ ra lối thoát chưa hay tớ sai chỗ nào nhỉ ?
1) Tim tap xac dinh D:
a) \(\left\{\dfrac{x\ne\dfrac{\Pi}{2}+k\Pi}{x\ne\dfrac{\Pi}{4}+k\dfrac{\Pi}{2}}\right\}\)
Cho bieu thuc A=\(\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\div\dfrac{1}{\sqrt{x}-1}\)
a/ Tim dieu kien cua x de bieu thuc A co gia tri xac dinh
b/ Rut gon A
c/ Tinh gia tri cua A khi x = \(4-2\sqrt{3}\)
d/ Tim gia tri nho nhat cua A
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).