Những câu hỏi liên quan
YN
Xem chi tiết
NT
26 tháng 8 2021 lúc 0:03

Xét ΔADB và ΔBCA có 

AD=BC

\(\widehat{DAB}=\widehat{CBA}\)

AB chung

Do đó: ΔADB=ΔBCA

Suy ra: DB=CA

Xét ΔACD và ΔBDC có

AC=BD

DC chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{ADC}=\widehat{BCD}\)

Xét tứ giác ABCD có 

\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)

\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)

\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên AB//CD

Xét tứ giác ABCD có AB//CD

nên ABCD là hình thang

mà AC=BD

nên ABCD là hình thang cân

Bình luận (0)
TM
Xem chi tiết
H24
1 tháng 2 2017 lúc 10:00

bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!

Bình luận (0)
H24
1 tháng 2 2017 lúc 15:15

bài 2 theo mk là làm như thế này !

à mà bạn tự vẽ hình nhé!!!

Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.

Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:

AD = BC ( đề cho)

góc D = góc C ( đề cho )

=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )

=> AH = BG

mặt khác AH // BG ( cùng \(\perp\) BC )

=> Tứ giác ABGH là hình bình hành

=> AB // HG hay AB // DC

Tứ giác ABCD có góc D = góc C và AB // DC

=> ABCD là hình thang cân ( đpcm)

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
BK
3 tháng 7 2021 lúc 17:04

Xét ▲ADC và ▲BCD có:

AD = BC ( gt )

AC = BD ( gt )

DC chung

=> ▲ADC = ▲BCD ( c.c.c )

=> góc D = góc C ( c.t.ứ )

cmtt ta đc góc A = Góc B

Mà Góc D + góc A + Góc C + Góc B=360o

=> 2GócA+2GócD=360o

-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang

Vì góc D = góc C (cmt) nên ABCD là hình thang cân

Bình luận (1)
 Khách vãng lai đã xóa
PO
Xem chi tiết
PO
30 tháng 8 2021 lúc 15:33

Hình vẽ minh hoạ undefined

Bình luận (0)
KK
30 tháng 8 2021 lúc 16:01

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

Bình luận (2)
KK
1 tháng 9 2021 lúc 19:18

Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc

Bình luận (1)
HT
Xem chi tiết
HT
31 tháng 12 2015 lúc 9:24

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

Bình luận (0)
HT
31 tháng 12 2015 lúc 9:25

 Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

Bình luận (0)
H24
19 tháng 9 2021 lúc 8:09

a﴿ Kẻ BN vuông AD, BM vuông CD

Xét tam giác vuông BNA và BMD có

: AB = BC ; góc BNA = 180 độ

‐ góc BAD = 70 độ

nên góc BAN = góc BCD = 70 độ

=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿

=> BN = BM => BD là phân giác góc D

b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A

khi đó góc ADB = ﴾180 ‐110) :2= 35 độ

=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD

Và góc BCD = góc ADC = 70 độ

=> ABCD là hình thang cân

Bình luận (0)
NH
Xem chi tiết
CT
5 tháng 7 2015 lúc 8:46

nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6 

Bình luận (0)
NC
5 tháng 7 2015 lúc 8:45

a, Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70* 
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D (đpcm) 
b/ 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35* 
=>ADC = 70* 
Do ADC + BAD = 180* => AB song song CD 
VÀ BCD = ADC =70* 
=> tứ giác ABCD là htc (đpcm)

Bình luận (0)
HT
31 tháng 12 2015 lúc 9:15

 tứ giác ABCD có góc A + góc C = 180 độ 
nên tứ giác ABCD nội tiếp đường tròn 
nên góc ADB = ACB ( 2 góc cùng chắn cung AB) 
Mà góc ACB = BAC ( tam giác ABC cân tại B do AB = BC ) 
và góc BAC = BDC ( cùng chắn cung BC) 
==>> góc ADB = BDC (1) 
nên DB là tia phân giác của góc D 

Ta có góc ADB = ABD ( tam giác ADB cân tại A do AD = AB ) (2) 
Từ (1), (2) ta suy ra góc ABD = BDC 
mà 2 góc này ở vị trí so le trong so với 2 đoạn AB và CD 
do đó AB // CD 
==> ABCD là hình thang 
mà AD = BC nên ABCD là hình thang cân 

Bình luận (0)
DA
Xem chi tiết
OO
5 tháng 9 2016 lúc 20:48

Kẻ .BN vuông AD, BM vuông CD 
Xét tam giác vuông BNA và BMD có 
+ AB = BC 
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn) 
Suy ra : BN = BM => BD là phân giác góc D 
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350 
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD 
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)

chúc bạn học giỏi!! ^^

ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434

Bình luận (0)
PL
Xem chi tiết
NT
6 tháng 8 2022 lúc 20:07

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

Bình luận (0)