Những câu hỏi liên quan
BM
Xem chi tiết
AK
13 tháng 1 2019 lúc 11:51

Sử dụng phương pháp quy nạp 

Bình luận (0)
BM
13 tháng 1 2019 lúc 23:16

Dùng sao hả bạn,giúp mk vói😢

Bình luận (0)
TT
9 tháng 2 2020 lúc 11:45

Ta thấy : \(n\inℤ^+\Rightarrow n=k+1\left(k\inℕ\right)\)

Khi đó : \(A=2^{3\left(k+1\right)+1}+2^{3\left(k+1\right)-1}+1\)

\(=2^{3k+4}+2^{3k+2}+1\)

\(=8^k.16+8^k.4+1\equiv1.2+1.4+1\equiv0\left(mod7\right)\)

Do vậy : \(A⋮7\) mà \(A>7\forall n\inℤ^+\)

\(\Rightarrow\)\(A=2^{3n+1}+2^{3n-1}+1\) là hợp số (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
CL
Xem chi tiết
NL
21 tháng 11 2021 lúc 22:32

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

Bình luận (1)
NB
Xem chi tiết
NT
27 tháng 3 2021 lúc 22:57

Gọi \(d\inƯC\left(2-3n;3n-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2-3n⋮d\\3n-1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(2-3n;3n-1\right)=1\)
hay \(\dfrac{2-3n}{3n-1}\) là phân số tối giản(đpcm)

Bình luận (0)
PA
Xem chi tiết
GV
24 tháng 2 2015 lúc 21:19

\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)

P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)

Bình luận (0)
VP
13 tháng 8 2017 lúc 8:48

ban thieu DKXD:N=/\(\frac{-1}{2}\)

Bình luận (0)
NN
10 tháng 8 2019 lúc 9:59

Phân số P chắc chắn không tối giản vì tử và mẫu chia hết cho 2n - 1, còn phân số sau khi rút gọn mới là tối giản.

\(P=\frac{n^2+n-1}{n^2+n+1}\)

Gọi d là ước chung lớn nhất của tử và mẫu

\(\hept{\begin{cases}n^2+n+1⋮d\\n^2+n-1⋮d\end{cases}}\)

suy ra \(n^2+n+1-\left(n^2+n-1\right)⋮d\)hay \(2⋮d\)

Lại có \(n^2+n+1=n\left(n+1\right)+1\)là số lẻ nên d là số lẻ.

Hai điều trên suy ra d = 1.

Do đó P là phân số tối giản.

Bình luận (0)
GG
Xem chi tiết