giải hệ pt sau: \(\left\{{}\begin{matrix}2x^2y+3xy=4x^2+9y\\2x^2+9x=7y+6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-3xy^2-2y^3=0\\3xy+2x-4y=6\end{matrix}\right.\)giải hệ pt sau
giải hệ pt :
\(\hept{\begin{cases}2x^2y+3xy=4x^2+9y\\7y+6=2x^2+9x\end{cases}}\)
Cộng hai pt ta được: \(2x^2y+3xy+7y+6=4x^2+9y+2x^2+9x\)
\(\Leftrightarrow2x^2y+3xy-2y-6x^2-9x+6=0\)
\(\Leftrightarrow\left(y-3\right)\left(x+2\right)\left(2x-1\right)=0\)
tới đây bạn tự giải tiếp nhé
giải hpt sau
\(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x-3y-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+y^2-2x-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y^2+18y+9+y^2-6y-6-2y-23=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}10y^2+10y-20=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y^2+y-2=0\\x=3y+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(y+2\right)\left(y-1\right)=0\\x=3y+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\in\left\{-2;1\right\}\\x=3y+3\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-3;-2\right);\left(6;1\right)\right\}\)
a: \(\left\{{}\begin{matrix}3x^2+6xy-x+3y=0\\4x-9y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9y=4x-6\\3x^2+6xy-x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{9}x-\dfrac{2}{3}\\3x^2+6x\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)-x+3\cdot\left(\dfrac{4}{9}x-\dfrac{2}{3}\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x^2+\dfrac{8}{3}x^2-4x-x+\dfrac{4}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{17}{3}x^2-\dfrac{11}{3}x-2=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17x^2-11x-6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)\left(17x+6\right)=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}17x+6=0\\y=\dfrac{4}{9}x-\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=\dfrac{4}{9}\cdot1-\dfrac{2}{3}=\dfrac{4}{9}-\dfrac{2}{3}=-\dfrac{2}{9}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{6}{17}\\y=\dfrac{4}{9}\cdot\dfrac{-6}{17}-\dfrac{2}{3}=\dfrac{-14}{17}\end{matrix}\right.\end{matrix}\right.\)
Giai hệ PT sau \(\left\{{}\begin{matrix}x^2y+xy^2=0\\2x^2+3xy+2y^2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y+xy^2=0\left(1\right)\\2x^2+3xy+2y^2=1\left(2\right)\end{matrix}\right.\)
\(pt\left(1\right)\Leftrightarrow xy\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\x=-y\end{matrix}\right.\)
Với \(x=0\) thế vào pt(2) ta được\(2.0^2+3.0.y+2y^2=1\Rightarrow2y^2=1\Rightarrow y^2=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{\sqrt{2}}\)
Với \(y=0\) thế vào pt(2) ta được
\(2x^2+3.x.0+2.0^2=1\Rightarrow2x^2=1\Rightarrow x^2=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{\sqrt{2}}\)
Với \(x=-y\) thế vào pt(2) ta được
\(2\left(-y\right)^2+3\left(-y\right).y+2y^2=1\Rightarrow2y^2-3y^2+2y^2=1\Rightarrow y^2=1\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=1\\y=1\Rightarrow x=-1\end{matrix}\right.\)
vậy ...
Giải hệ phương trình sau:\(\hept{\begin{cases}2x^2y+3xy=4x^2+9y\\7y+6=2x^2+9x\end{cases}}\)giúp mình với nhé!
Giải hệ pt:
\(\left\{{}\begin{matrix}x^3+y^3+3xy=1\\\sqrt{\left(4-x\right)\left(13-y\right)}=\dfrac{2x+2y+25}{2x+y+2}\end{matrix}\right.\)
\(x^3+y^3+3xy=1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y-1=0\\x=y=-1\end{matrix}\right.\)
TH1: \(x=y=-1\) thế vào pt dưới kiểm tra ko thỏa mãn
TH2: \(y=1-x\) thế vào pt dưới:
\(\sqrt{\left(4-x\right)\left(x+12\right)}=\dfrac{27}{x+3}\) (ĐKXĐ: \(-12\le x\le4;x\ne-3\))
- Với \(x< -3\) pt vô nghiệm, với \(x>-3\)
Đặt \(x+3=t>0\)
\(\Rightarrow\sqrt{\left(t+9\right)\left(7-t\right)}=\dfrac{27}{t}\Leftrightarrow64-\left(t+1\right)^2=\dfrac{27^2}{t^2}\)
\(\Leftrightarrow64=\dfrac{27^2}{t^2}+\left(t+1\right)^2=\dfrac{25^2}{t^2}+t^2+\dfrac{104}{t^2}+t+t+1\ge2\sqrt{\dfrac{25^2t^2}{t^2}}+3\sqrt[3]{\dfrac{104t^2}{t^2}}+1>65\) (vô lý)
Vậy hệ vô nghiệm
giải hệ pt sau : \(\left\{{}\begin{matrix}x^3-y^3=35\\2x^2+3y^2=4x-9y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=35\\6x^2+9y^2=12x-27y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-6x^2-9y^2=35-12x+27y\)
\(\Leftrightarrow x^3-6x^2+12x-8=y^3+9y^2+27y+27\)
\(\Leftrightarrow\left(x-2\right)^3=\left(y+3\right)^3\)
\(\Leftrightarrow x-2=y+3\)
\(\Leftrightarrow y=x-5\)
Thay vào pt dưới: \(2x^2+3\left(x-5\right)^2=4x-9\left(x-5\right)\)
\(\Leftrightarrow...\)
giải hpt:
a) \(\left\{{}\begin{matrix}4x+9y=6\\3x^2+6xy-x+3y=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x+y+2\right)\left(2x+2y-1\right)=0\\3x^2-32y^2+5=0\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
Giải hệ phương trình: \(\hept{\begin{cases}2x^2y+3xy=4x^2+9y\\7y+6=2x^2+9x\end{cases}}\)