Những câu hỏi liên quan
MN
Xem chi tiết
NL
28 tháng 7 2021 lúc 14:38

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 7 2021 lúc 14:40

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 7 2021 lúc 14:42

2a.

\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)

\(\Leftrightarrow cos^2x+2cosx+1=0\)

\(\Leftrightarrow\left(cosx+1\right)^2=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

Bình luận (0)
H24
Xem chi tiết
NH
15 tháng 8 2016 lúc 8:24

Hỏi đáp Toán

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 9 2017 lúc 7:21

Đáp án D

Bình luận (0)
H24
Xem chi tiết
H24
1 tháng 10 2021 lúc 12:22

a

\(\Leftrightarrow\left(3sinx-sin3x\right)cos3x+\left(3cosx+cos3x\right)sin3x+3\sqrt{3}cos4x=3\)

\(\Leftrightarrow\left(sinx.cos3x+sin3x.cosx\right)+\sqrt{3}cos4x=1\)

\(\Leftrightarrow sin4x+\sqrt{3}cos4x=1\)

Tới đây thôi, mình lười ghi rồi =))

b

\(\Leftrightarrow\left(1-cos2x\right)\left(2sin^2x-1\right)\left(2sin^2+1\right)=cos2x\left(7cos^22x+3cos2x-4\right)\)

\(\Leftrightarrow\left(1-cos2x\right)\left(-cos2x\right)\left(2-cos2x\right)=cos2x\left(7cos^22x+3cos2x+4\right)\)

\(\Leftrightarrow-cos^22x+3cos2x-2=7cos^22x+3cos2x+4\)

\(\Leftrightarrow4cos^22x+3=0\)

=> pt vô nghiệm

Bình luận (1)
TD
Xem chi tiết
NL
23 tháng 5 2020 lúc 20:41

\(\frac{sin^22x-4sin^2x}{sin^22x+4sin^2x-4}=\frac{4sin^2x.cos^2x-4sin^2x}{4sin^2x.cos^2x+4\left(sin^2x-1\right)}\)

\(=\frac{4sin^2x\left(cos^2x-1\right)}{4sin^2x.cos^2x-4cos^2x}=\frac{-4sin^4x}{4cos^2x\left(sin^2x-1\right)}=\frac{sin^4x}{cos^4x}=tan^4x\)

Bình luận (0)
AH
14 tháng 7 2020 lúc 9:59

Lời giải:

PT $\Leftrightarrow 4(2\sin x\cos x)^2+8\cos ^2x-\frac{19}{3}=0$

$\Leftrightarrow 16\cos ^2x(1-\cos ^2x)+8\cos ^2x-\frac{19}{3}=0$

$\Leftrightarrow -16\cos ^4x+24\cos ^2x-\frac{19}{3}=0$

$\Leftrightarrow -16a^2+24a-\frac{19}{3}=0$ (đặt $a=\cos ^2x$. ĐK: $a\in [0;1]$)

$\Rightarrow a=\frac{9\pm 2\sqrt{6}}{12}$

Do $a\in [0;1]$ nên $a=\cos ^2x=\frac{9-2\sqrt{6}}{12}$

$\Rightarrow \cos 2x=2\cos ^2x-1=\frac{3-2\sqrt{6}}{6}$

\(\Rightarrow x=k\pi\pm \frac{1}{2}\cos ^{-1}\frac{3-2\sqrt{6}}{6}\) với $k$ nguyên.

Bình luận (0)
NT
Xem chi tiết
AH
2 tháng 10 2020 lúc 0:42

Lời giải:

PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$

$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$

Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$

$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên

Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$

Nếu $4\sin 2x+\cos 2x=0$

$\Rightarrow \tan 2x=\frac{-1}{4}$

$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vậy có $4$ nghiệm thỏa mãn.

Bình luận (0)
 Khách vãng lai đã xóa
CD
17 tháng 8 2020 lúc 10:45

Lời giải:

PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$

$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$

Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$

$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên

Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$

Nếu $4\sin 2x+\cos 2x=0$

$\Rightarrow \tan 2x=\frac{-1}{4}$

$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$

Vậy có $4$ nghiệm thỏa mãn.

Bình luận (0)
 Khách vãng lai đã xóa
JE
Xem chi tiết
NL
25 tháng 7 2020 lúc 22:03

a/

\(\Leftrightarrow4sin^3x+6\sqrt{2}sinx.cosx-8sinx=0\)

\(\Leftrightarrow2sinx\left(2sin^2x+3\sqrt{2}cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\2sin^2x+3\sqrt{2}cosx-4=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\left(1-cos^2x\right)+3\sqrt{2}cosx-4=0\)

\(\Leftrightarrow-2cos^2x+3\sqrt{2}cosx-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\sqrt{2}>1\left(l\right)\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow x=\pm\frac{\pi}{4}+k2\pi\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 22:11

b/

\(\Leftrightarrow4cos^3x+8sinx.cosx-7cosx=0\)

\(\Leftrightarrow cosx\left(4cos^2x+8sinx-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\4cos^2x+8sinx-7=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(1-sin^2x\right)+8sinx-7=0\)

\(\Leftrightarrow-4sin^2x+8sinx-3=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=\frac{3}{2}\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
NL
25 tháng 7 2020 lúc 22:14

c/

ĐKXĐ; ...

\(\Leftrightarrow\frac{sinx}{cosx}+\frac{cosx}{sinx}-5+\frac{3}{sin^22x}=0\)

\(\Leftrightarrow\frac{sin^2x+cos^2x}{sinx.cosx}-5+\frac{3}{sin^22x}=0\)

\(\Leftrightarrow\frac{3}{sin^22x}+\frac{2}{sin2x}-5=0\)

Đặt \(\frac{1}{sin2x}=t\Rightarrow3t^2+2t-5=0\)

\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{5}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{3}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{3}{5}\right)+k\pi\end{matrix}\right.\)

Bình luận (0)
NP
Xem chi tiết