Những câu hỏi liên quan
DD
Xem chi tiết
H24
11 tháng 4 2021 lúc 11:28

undefined

Bình luận (3)
PG
Xem chi tiết
HH
13 tháng 1 2019 lúc 22:30

a) m=-6

Bình luận (0)
DK
13 tháng 1 2019 lúc 22:51

Ta có: 2m-3m-6 = 0 <=> -m-6=0<=>m=-6

Bình luận (0)
H24
14 tháng 1 2019 lúc 6:37

\(\left|x-m\right|+\left|x^2+4x-5\right|=0\)

\(\hept{\begin{cases}\left|x-m\right|\ge0\\\left|x^2+4x-5\right|\ge0\end{cases}\text{Dấu }=}\text{xảy ra khi}\)

\(\hept{\begin{cases}x-m=0\\x^2+4x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=m\\x^2+5x-x-5=0\end{cases}\Rightarrow}\hept{\begin{cases}x=m\\\left(x-1\right).\left(x+5\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=m\\x_1=1,x_2=-5\end{cases}}}\)

Vậy x=m=1 hoặc x=m=-5

Bình luận (0)
HA
Xem chi tiết
NM
14 tháng 9 2021 lúc 8:11

\(a,x=-1\\ \Leftrightarrow1-2\left(m+1\right)+m^2-3m=0\\ \Leftrightarrow-1-5m+m^2=0\\ \Leftrightarrow m^2-5m-1=0\\ \Delta=25+4=29\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)

\(b,\)Pt có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+12m>0\\ \Leftrightarrow20m+4>0\Leftrightarrow m>-\dfrac{1}{5}\)

\(c,\)Để pt có nghiệm duy nhất (nghiệm kép)

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)=0\\ \Leftrightarrow20m+4=0\\ \Leftrightarrow m=-\dfrac{1}{5}\)

 

 

 

Bình luận (0)
MN
Xem chi tiết
QB
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Bình luận (0)
VN
Xem chi tiết
NT
31 tháng 1 2021 lúc 20:38

a) Để phương trình \(x^2-2m^2x+3m=0\) có nghiệm x=3 thì 

Thay x=3 vào phương trình \(x^2-2m^2x+3m=0\), ta được:

\(3^2-2\cdot m^2\cdot3+3m=0\)

\(\Leftrightarrow-6m^2+3m+9=0\)

\(\Leftrightarrow-6m^2-6m+9m+9=0\)

\(\Leftrightarrow-6m\left(m+1\right)+9\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(-6m+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\-6m+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\-6m=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{3}{2}\end{matrix}\right.\)

Vậy: Khi \(m\in\left\{-1;\dfrac{3}{2}\right\}\) thì phương trình có nghiệm là x=3

b) Để phương trình có nghiệm là x=2 thì

Thay x=2 vào phương trình \(x^2-2m^2x+3m=0\), ta được:

\(2^2-2m^2\cdot2+3m=0\)

\(\Leftrightarrow-4m^2+3m+4=0\)

\(\Leftrightarrow-\left(4m^2-3m-4\right)=0\)

\(\Leftrightarrow-\left(4m^2-2\cdot2m\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{73}{16}\right)=0\)

\(\Leftrightarrow-\left(2m-\dfrac{3}{4}\right)^2+\dfrac{73}{16}=0\)(vô lý)

Vậy: Không có giá trị nào của m để phương trình \(x^2-2m^2x+3m=0\) có nghiệm là x=2

Bình luận (0)
LN
31 tháng 1 2021 lúc 20:27

Cái này thì bạn cứ thế x hoặc m vào giải ra thui là được mà :v

Bình luận (0)
H24
31 tháng 1 2021 lúc 20:40

\(x^2-2m2x+3m=0\left(1\right)\)

a) Thay x = 3 vào PT (1) ta có:

\(3^2-2m.2.3+3.m=0\)

\(\rightarrow\) \(9-12m+3m=0\)

\(\rightarrow\) \(9-9m=0\)

\(\rightarrow m=1\)

b) Thay x = 2 vào PT (1) ta có :

\(2^2+2m.2.2+3m=0\)

\(\rightarrow4-8m+3m=0\)

\(\rightarrow4-5m=0\)

\(\rightarrow m=\dfrac{4}{5}\)

 

Bình luận (0)
HN
Xem chi tiết
NA
Xem chi tiết
AH
29 tháng 11 2023 lúc 9:21

Lời giải:

Đặt $x^2+2x=t$ thì $t=(x+1)^2-1\geq -1$

PT ban đầu trở thành: $t^2-4mt+3m+1=0(*)$

Ta cần tìm $m$ để $(*)$ có nghiệm $t\geq -1$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta'=4m^2-3m-1\geq 0\\ t_1+t_2\geq -2\\ (t_1+1)(t_2+1)\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-1)(4m+1)\geq 0\\ 4m\geq -2\\ t_1t_2+(t_1+t_2)+1=3m+1+4m+1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq 1 \text{ hoặc } m\leq \frac{-1}{4}\\ m\geq \frac{-1}{2}\\ m\geq \frac{-2}{7}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\geq 1\\ \frac{-2}{7}\leq m\leq \frac{-1}{4}\end{matrix}\right.\)

Bình luận (0)
PP
Xem chi tiết
NT
4 tháng 12 2021 lúc 21:57

Câu 1: D

 

Bình luận (1)
CN
4 tháng 12 2021 lúc 22:04

1.D

2.C

chắc là thế chơ cũng ko bt nữa ☘

Bình luận (0)
DT
Xem chi tiết
LH
23 tháng 5 2021 lúc 20:14

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Xét \(\Delta=4\left(m+1\right)^2-4.3.\left(3m-5\right)\)\(=4m^2-28m+64=4\left(m-\dfrac{7}{2}\right)^2+15>0\forall m\)

=> pt luôn có hai nghiệm pb

Kết hợp viet và giả thiết có hệ: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2m+2}{3}\\x_1=3x_2\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\x_1=\dfrac{m+1}{2}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(m+1\right)}{6}.\dfrac{\left(m+1\right)}{2}=\dfrac{3m-5}{3}\)\(\Leftrightarrow m^2-10m+21=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=7\\m=3\end{matrix}\right.\)

Tại m=7 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=4\\x=\dfrac{4}{3}\end{matrix}\right.\)

Tại m=3 thay vào pt ta tìm được \(\left[{}\begin{matrix}x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)

 

Bình luận (0)
BT
Xem chi tiết