NA

tìm m để phương trình sau có nghiệm (x^2+2x)^2-4m(x^2+2x)+3m+1=0

AH
29 tháng 11 2023 lúc 9:21

Lời giải:

Đặt $x^2+2x=t$ thì $t=(x+1)^2-1\geq -1$

PT ban đầu trở thành: $t^2-4mt+3m+1=0(*)$

Ta cần tìm $m$ để $(*)$ có nghiệm $t\geq -1$

Điều này xảy ra khi:

\(\left\{\begin{matrix} \Delta'=4m^2-3m-1\geq 0\\ t_1+t_2\geq -2\\ (t_1+1)(t_2+1)\geq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-1)(4m+1)\geq 0\\ 4m\geq -2\\ t_1t_2+(t_1+t_2)+1=3m+1+4m+1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq 1 \text{ hoặc } m\leq \frac{-1}{4}\\ m\geq \frac{-1}{2}\\ m\geq \frac{-2}{7}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m\geq 1\\ \frac{-2}{7}\leq m\leq \frac{-1}{4}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
KQ
Xem chi tiết
KQ
Xem chi tiết
TS
Xem chi tiết
PB
Xem chi tiết
QM
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
PP
Xem chi tiết