Chứng minh bất đẳng thức sau
\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}< 2\)
Chứng minh bất đẳng thức sau:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2}}>\sqrt{n}\)
cho n là 1 số nguyên dương lớn hơn 1 . hãy chứng minh bất đẳng thức sau :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{13}{24}\)
cho n là 1 số nguyên dương lớn hơn 1 . hãy chứng minh bất đẳng thức sau :
\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}>\frac{13}{24}\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
với n>0 chứng minh bất đẳng thức sau
\(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)
\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
=> \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)(1)
\(\frac{1}{2\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)=> \(\frac{1}{2\sqrt{n}}>\sqrt{n+1}-\sqrt{n}\)(2)
Từ (1) và (2) => \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)
Chứng minh rằng, với mọi số nguyên dương n ta luôn có bất đẳng thức
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+3n+2}< \frac{1}{2}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n^2+n+2n+2}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n+1\right).\left(n+2\right)}\)
\(\Leftrightarrow\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{\left(n+2\right)-\left(n+1\right)}{\left(n+2\right).\left(n+1\right)}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x+1}-\frac{1}{x+2}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+2}< \frac{1}{2}\left(đpcm\right)\)
Cho k là số nguyên dương bất kì. Chứng minh bất đẳng thức sau \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
Chứng minh bất đẳng thức
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)>\frac{1}{2}\) \(\left(n\varepsilonℕ^∗,n\ge2\right)\)
\(\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\right)\left(\frac{n^2-1}{n^2}\right)\)
=\(\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(n-2\right)n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{\left(n-2\right).n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}=\frac{1}{2}.\frac{n+1}{n}=\frac{1}{2}+\frac{1}{2n}>\frac{1}{2}\)
Chứng Minh Bất Đẳng Thức sau :
\(\frac{a^n}{b+c}+\frac{b^n}{a+c}+\frac{c^n}{a+b}\ge\frac{1}{3}\cdot\left(a^n+b^n+c^n\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right).\)
Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)
Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit
ủa trebyshev có dạng như vậy hả bạn