Những câu hỏi liên quan
DG
Xem chi tiết
TV
17 tháng 11 2021 lúc 20:33

Điều kiện \(x\ge-1\)

Phương trình đã cho tương đương với

\(\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+4\sqrt{x+1}+1+3\left(x+1\right)+1=\sqrt[3]{3x+4}+\left(\sqrt[3]{3x+4}\right)^3\)

\(\Leftrightarrow\left(\sqrt{x+1}+1\right)^2+\left(\sqrt{x+1}+1\right)=\left(\sqrt[3]{3x+4}\right)^3+\sqrt[3]{3x+4}\) (*)

Xét hàm số f(t) =t3+t trên R

                   f'(t)=3t2+1>0 với mọi x \(\in\)R

Nên (*) \(\Leftrightarrow f\left(\sqrt{x+1}+1\right)=f\left(\sqrt[3]{3x+4}\right)\Leftrightarrow\sqrt{x+1}+1=\sqrt[3]{3x+4}\)

Đặt \(\left\{{}\begin{matrix}u=\sqrt{x+1}\\y=\sqrt[3]{3x+4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}u+1=v\\3u^2+1=v^3\end{matrix}\right.\)

\(\Rightarrow v^3=3\left(v-1\right)^2+1\Leftrightarrow v^3-1-3\left(v-1\right)^2=0\Leftrightarrow v=1\)

Với v=1 => x=-1

Vậy x=-1 là nghiệm của phương trình

Bình luận (0)
H24
Xem chi tiết
TD
1 tháng 11 2019 lúc 16:50

nhiều thế giải ko đổi đâu bạn

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 11 2019 lúc 18:47

vậy trả lời câu a thôi

Bình luận (0)
 Khách vãng lai đã xóa
TD
1 tháng 11 2019 lúc 21:06

đkxđ : \(\frac{1}{2}\le x\le7\)

\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)

\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)

\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)

\(\Leftrightarrow x=5\)

còn bài a,c lười đánh lắm

Bình luận (0)
 Khách vãng lai đã xóa
CN
Xem chi tiết
SA
18 tháng 11 2018 lúc 13:10

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{3x+2}=2\)

Ta có: \(\left\{{}\begin{matrix}a-b=2\\3a^3-b^3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+2\left(1\right)\\3a^3-b^3=4\end{matrix}\right.\)

Thay (1) vào (2) ta có:

3(b + 2)3 - b3 = 4

<=> 3(b3 + 6b2 + 12b + 8) - b3 = 4

<=> 2b3 + 6b2 + 12b + 4 = 0

<=> b3 + 3b2 + 6b + 2 = 0

Đến đây chắc phải dùng công thức nghiệm tổng quát, vô lý @@

Bình luận (1)
H24
Xem chi tiết
TN
24 tháng 5 2016 lúc 6:05

x= 0.761322463768116,

x= 0.369494467346496,

x=1.57660410301179

Bình luận (0)
RX
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
H24
21 tháng 6 2021 lúc 16:39

`ĐK:x>=2`

`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`

`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`

`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`

`+)sqrt{x-2}=sqrt{x+3}`

`<=>x-2=x+3`

`<=>0=5` vô lý

`+)sqrt{x-1}-1=0`

`<=>x-1=1`

`<=>x=2(tm)`.

Vậy `x=2`.

Bình luận (0)
PB
Xem chi tiết
NL
5 tháng 11 2019 lúc 7:20

a/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)

Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)

\(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)

Vậy nghiệm của pt là \(1\le x\le2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AH
27 tháng 1 2022 lúc 13:27

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831

Bình luận (0)