cho tam giác vuông ABC AB/AC=3/4 , đường cao AH = 18cm. tính chu vi tam giá ABC
Cho tam giác ABC vuông tại A, có đường cao AH. Cho biết AB/AC = 3/4; AH= 18cm. Tính chu vi tam giác ABC
Làm ơn giúp mìh với, mìh đang cần gấp. Cảm ơn
2. Cho tam giác ABC vuông tại A; AB/AC = 3/4; đường cao AH=18cm. Tính chu vi tam giác ABC ?
3. Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
4. Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Tính độ dài AB, AC biết AH= 6cm; S tám giác ABC = 37,5 cm2
5. Cho tam giác ABC vuông cân tại A, M thuộc BC, AM=m. Tính tổng MB^2 + MC^2 theo m
Làm ơn chỉ giúp mình, cảm ơn rất nhiều !
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH a. Cho AH = 6; BH = 4. Tính AC, BC. b. Cho AB = 15; HC = 16. Tính BH, AC. c. Cho AH = 6; AB : AC = 3 : 4. Tính chu vi và diện tích tam giác ABC.
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}\)=\(\dfrac{4}{3}\), đường cao AH=3,6 cm. Tính chu vi tam giác ABC
Có:
\(\dfrac{AB}{AC}=\dfrac{4}{3}=\dfrac{4k}{3k}\) (k là số bất kì)
\(\Rightarrow AB=4k,AC=3k\)
Áp dụng đl pytago vào tam giác ABC được:
\(BC^2=AB^2+AC^2=\left(4k\right)^2+\left(3k\right)^2=16k^2+9k^2=25k^2=\left(5k\right)^2\\ \Rightarrow BC=5k\left(cm\right)\)
Theo hệ thức lượng, có:
\(AH.BC=AB.AC\\ \Leftrightarrow3,6.5k=4k.3k\\ \Leftrightarrow18=12k\\ \Rightarrow k=\dfrac{18}{12}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=4k=4.\dfrac{3}{2}=6\left(cm\right)\\AC=3k=3.\dfrac{3}{2}=\dfrac{9}{2}=4,5\left(cm\right)\\BC=5k=5.\dfrac{3}{2}=\dfrac{15}{2}=7,5\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow P_{ABC}=AB+AC+BC=6+4,5+7,5=18\left(cm\right)\)
cho tam giác ABC vuông tại A có AB / AC = 3 /4 , đường cao AH = 18 cm . Tính chu vi tam giác ABC
Tam giác ABC vuông tại A, áp dụng hệ thức, ta có:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{18^2}=\frac{1}{324}\) (1)
Đặt \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=k\Rightarrow AB=3k;AC=4k\)
Thế vào (1) ta được: \(\frac{1}{\left(3k\right)^2}+\frac{1}{\left(4k\right)^2}=\frac{1}{324}\)
\(\Rightarrow\frac{9k^2+16k^2}{9k^2.16k^2}=\frac{1}{324}\)
\(\Rightarrow\frac{15k^2}{144k^4}=\frac{1}{324}\Rightarrow\frac{15}{144k^2}=\frac{1}{324}\Rightarrow144k^2=4860\Rightarrow k^2=33,75\Rightarrow k=\frac{3\sqrt{15}}{2}\)
\(\Rightarrow AB=\frac{3\sqrt{15}}{2}.3=\frac{9\sqrt{15}}{2}\) (cm)
AC = (3 √15)/2 . 4 = 6 √15 (cm)
Tam giác ABC vuông tại A, áp dụng định lý Pitago ta có:
AB2 + AC2 = [(9 √15)/2]^2+(6 √15)^2= 3375/4 = BC2
=> BC = (15 √15)/2
Vậy chu vi của tam giác ABC là: AB+BC+AC= (9 √15)/2 + 6 √15 + (15 √15)/2 = 18 √15 (cm)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC
\(\dfrac{AB}{AC}=\dfrac{20}{21}\Rightarrow AB=\dfrac{20AC}{21}\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{841}{400AC^2}\)
\(\Rightarrow AC=609\) \(\Rightarrow AB=\dfrac{20}{21}AC=580\)
\(BC=\sqrt{AB^2+AC^2}=841\)
Chu vị: \(609+580+841=2030\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{20}{21}\)
nên \(AB=\dfrac{20}{21}\cdot AC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{420^2}=\dfrac{1}{\left(\dfrac{20}{21}AC\right)^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{\dfrac{400}{441}AC^2}+\dfrac{\dfrac{400}{441}}{\dfrac{400}{441}AC^2}=\dfrac{1}{176400}\)
\(\Leftrightarrow\dfrac{400}{441}AC^2=336400\)
\(\Leftrightarrow AC^2=370881\)
hay AC=609(cm)
\(\Leftrightarrow AB=\dfrac{20}{21}\cdot AC=\dfrac{20}{21}\cdot609=580\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=580^2+609^2=371461\)
hay BC=841(cm)
Chu vi tam giác ABC là:
AB+AC+BC=580+609+841=2030(cm)
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AC=15cm, AB=20cm. Tính BC, AH và chu vi tam giác ABC
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
Ta có: \(P_{ABC}=AB+AC+BC=20+15+25=60\left(cm\right)\)
cho tam giác abc vuông tại a,biết đường cao ah chia tam giác thành 2 tam giác ahb và ahc có chu vi lần lượt là 18cm và 24 cm .tính chu vi tam giác abc
Chu vi tam giác ABC :
AHB + AHC = ABC
Thay số, ta được : 18+24 = 42 (cm)