Những câu hỏi liên quan
VA
Xem chi tiết
DC
Xem chi tiết
NL
7 tháng 9 2021 lúc 16:24

Trong tam giác vuông ABC:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB\)

Trong tam giác vuông ABH:

\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=BC.sinB.cosB=6.sin55^0.cos55^0\approx2,8\left(cm\right)\)

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=BC.\left(cosB\right)^2=6.\left(cos55^0\right)^2\approx1,2\left(cm\right)\)

\(CH=BC-BH=6-1,2=4,8\left(cm\right)\)

Bình luận (0)
NL
7 tháng 9 2021 lúc 16:24

undefined

Bình luận (0)
TL
Xem chi tiết
TH
31 tháng 1 2021 lúc 1:08

góc A = 90 độ

suy ra tam giác ABC vuông tại A.

a) Áp dụng địng lý Pytago trong tam giác vuông ABC ta có: AB2 + AC2 = BC2

Mà AB = 40 cm, AC = 30 cm => BC = 50 cm

b)

Tính AH: 

Diện tích tam giác ABC có thể được tính theo hai cách: \(\dfrac{1}{2}\)AB.AC hoặc  \(\dfrac{1}{2}\)AH.BC

Suy ra: AH.BC = AB.AC

AH = 40.30:50 = 24 (cm).

Tính BH, CH:

Áp dụng định lý Pytago trong hai tam giác vuông AHB và AHC đều vuông tại H ta được:

+ AH2 + BH2 = AB2  => BH = \(\sqrt{\text{30^2 - 24^2}}\) = 18 (cm)

+ AH2 + CH2 = AC2 => CH = \(\sqrt{\text{40^2 - 24^2}}\) = 32 

 

Bình luận (0)
DP
Xem chi tiết
NT
26 tháng 8 2021 lúc 13:56

Theo định lí Pytago tam giác ABH vuông tại H ta có : 

\(BH=\sqrt{AB^2-AH^2}=\sqrt{36-\left(4,8\right)^2}=\frac{18}{5}\)cm 

Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA (cùng phụ ^HAC)

Vậy tam giác AHB ~ tam giác CHA ( g.g ) 

\(\frac{AH}{CH}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)

\(\Rightarrow HC=\frac{AH^2}{HB}=\frac{\left(4,8\right)^2}{\frac{18}{5}}=\frac{32}{5}\)cm 

=> \(BC=HC+HB=\frac{18}{5}+\frac{32}{5}=10\)cm 

Theo định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=\sqrt{100-36}=8\)cm 

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
H24
18 tháng 1 2023 lúc 21:32

Bạn xem hình.

loading...

Bình luận (0)
H24
18 tháng 1 2023 lúc 21:26

Xét \(\Delta ABC\) vuông tại \(A\)

\(BC=BH+HC=9+16=25\\ AB^2=BH.BC\\ =>AB=\sqrt{9.25}=15\\ AC^2=HC.BC\\ =>AC=\sqrt{16.25}=20\\ AH^2=BH.HC\\ =>AH=\sqrt{9.16}=12\)

Bình luận (0)
HL
Xem chi tiết