\(\sqrt{^{ }}\)x^2-4x+3 = x-2
Giải giúp mình ạ. Mình cảm ơn
(x - 2)/6 * sqrt(144/(x ^ 2 - 4x + 4)) (x ne2)
Mọi người giúp mình giải nhé, càng chi tiết càng tốt ạ. Mình cảm ơn mọi người
Em dùng công thức toán học hoặc viết ra giấy, chụp ảnh rồi up lên chứ thế này cô không đúng đề bài để giúp em được.
giải phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\) (mn giải chi tiết giúp mình với, mình cảm ơn ạ)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
Tìm x x(2x-3)-4x+6=0 Giải giúp mình ạ mình cảm ơn
\(\Leftrightarrow x\left(2x-3\right)-2\left(2x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(2x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(x\left(2x-3\right)-2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)
Giúp mình giải mấy bài này với mình cần gấp lắm . Cảm ơn
1) \(\sqrt{x^2+4x+4}+|x-4|=0\)
2) \(\sqrt{x^2-4x+3}=\sqrt{6x-21}\)
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
Giải các phương trình sau :
\(\sqrt{x-1}+\sqrt{2x+1}=1\)
Giúp mình với ạ . Mình cảm ơn <3
ĐKXĐ: \(x\ge1\)
\(\Rightarrow\left(\sqrt{x-1}+\sqrt{2x+1}\right)^2=1\Leftrightarrow x-1+2x+1+2\sqrt{\left(x-1\right)\left(2x+1\right)}=1\Leftrightarrow3x+2\sqrt{2x^2-x-1}=1\) \(\Leftrightarrow2\sqrt{2x^2-x-1}=1-3x\Rightarrow\left(2\sqrt{2x^2-x-1}\right)^2=\left(1-3x\right)^2\Leftrightarrow8x^2-4x-4=9x^2-6x+1\) \(\Leftrightarrow x^2-2x+5=0\Leftrightarrow\left(x-1\right)^2+4=0\Leftrightarrow\left(x-1\right)^2=-4\) vô lí vì VT\(\ge0\) mà VP<0 \(\Rightarrow\) ko có x Vậy...
Giúp mình với ạ . Cảm ơn nhiều .
1)Giải hệ phương trình : \(\left\{{}\begin{matrix}\sqrt{2x-3}-\sqrt{y}\text{=}2x-6\\x^3+y^3+7xy\left(x+y\right)\text{=}8xy.\sqrt{2\left(x^2+y^2\right)}\end{matrix}\right.\)
2) Giải phương trình : \(\dfrac{2\sqrt{x}}{x-1}.x+6+\sqrt{x+2}\text{=}\sqrt{2-x}+3\sqrt{4-x^2}\)
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Giải giúp mình với ạ^^ (x-2)(x-4)-(x-1)^2 Mình cảm ơn nhìu:3
\(=x^2-6x+8-x^2+2x-1=-4x+7\)
|x|+|2.x-3|=0
Giải giúp mình với ạ. Mình cảm ơn ạ
| x | + | 2x - 3 | = 0 (1)
Ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|2x-3\right|\ge0\end{cases}}\forall x\)
\(\Rightarrow\left|x\right|+\left|2x-3\right|\ge0\forall x\) (2)
Từ (1) và (2) => (1) \(\Leftrightarrow\) \(\hept{\begin{cases}\left|x\right|=0\\\left|2x-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2x=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
@@ Học tốt
!!! K chắc