Những câu hỏi liên quan
NA
Xem chi tiết
ND
18 tháng 1 2021 lúc 13:41

a) Ta có: \(x^2+2y^2+2z^2-2xy-2yz-2z=4\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2z+1\right)=5\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-1\right)^2=5\)

Mà \(5=0^2+1^2+2^2\) nên ta có dễ dàng xét được các TH

Làm tiếp nhé!

Bình luận (0)
 Khách vãng lai đã xóa
ND
18 tháng 1 2021 lúc 13:49

b) Ta có: \(x^2+13y^2-6xy=100\)

\(\Leftrightarrow\left(x^2-6xy+9y^2\right)+4y^2=100\)

\(\Leftrightarrow\left(x-3y\right)^2=100-4y^2\)

Mà \(\hept{\begin{cases}\left(x-3y\right)^2\ge0\\100-4y^2\le100\end{cases}}\Rightarrow0\le100-4y^2\le100\)

\(\Rightarrow y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5\right\}\)

Ta có các TH sau:

Nếu \(y=0\Rightarrow x^2=100\Rightarrow x=\pm10\)

Nếu \(y=\pm3\Leftrightarrow\orbr{\begin{cases}\left(x-9\right)^2=64\\\left(x+9\right)^2=64\end{cases}}\Rightarrow x\in\left\{17;1;-17;-1\right\}\)

... Tự làm tiếp nhé

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
TB
Xem chi tiết
NL
Xem chi tiết
AO
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Bình luận (0)
NL
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Bình luận (0)
NB
Xem chi tiết
HN
4 tháng 10 2016 lúc 11:41

Điều kiện xác định : \(\hept{\begin{cases}x\ge\frac{1}{2}\\y\ge1\\z\ge\frac{3}{4}\end{cases}}\)

Ta có : \(\sqrt{2x-1}+2\sqrt{2y-2}+3\sqrt{4z-3}=x+y+2z+4\)

\(\Leftrightarrow2\sqrt{2x-1}+4\sqrt{2y-2}+6\sqrt{4z-3}=2x+2y+4z+8\)

\(\Leftrightarrow\left(2x-1-2\sqrt{2x-1}+1\right)+\left(2y-2-4\sqrt{2y-2}+4\right)+\left(4z-3+6\sqrt{4z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2=0\)

Mà ta luôn có \(\left(\sqrt{2x-1}-1\right)^2\ge0\)\(\left(\sqrt{2y-2}-2\right)^2\ge0\)\(\left(\sqrt{4z-3}-3\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{2x-1}-1\right)^2+\left(\sqrt{2y-2}-2\right)^2+\left(\sqrt{4z-3}-3\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{2x-1}-1=0\\\sqrt{2y-2}-2=0\\\sqrt{4z-3}-3=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=3\end{cases}}\) (TMDK)

Vậy (x;y;z) = (1;3;3) 

Bình luận (0)
H24
4 tháng 10 2016 lúc 15:33

1:3:3

Bình luận (0)
HN
Xem chi tiết
ZZ
25 tháng 7 2020 lúc 22:50

Ta có:

\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)

Không tồn tại x,y,z thỏa mãn đề bài

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
Xem chi tiết
NN
10 tháng 7 2023 lúc 13:01

0,2:x=1,03+3,97

 

 

Bình luận (0)
NT
10 tháng 7 2023 lúc 19:54

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

Bình luận (0)
PH
Xem chi tiết
NL
14 tháng 11 2019 lúc 13:49

Lấy pt 2 trừ 2 lần pt 1:

\(3x^2-4y^3=3y^3-4x^2+7\Leftrightarrow y^3=x^2-1\)

Lấy pt 2 trừ 2 lần pt 3:

\(x^2-2y^2-4xy=3y^3+2z^2+7-4xz-4yz-4\)

\(\Leftrightarrow x^2-2y^2-4xy=3\left(x^2-1\right)+2z^2+7-4xz-4yz-4\)

\(\Leftrightarrow x^2+y^2+z^2+2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x+y-z\right)^2=0\)

\(\Leftrightarrow x+y=z\)

Hy vọng nó giúp được bạn

Bình luận (0)
 Khách vãng lai đã xóa
PH
8 tháng 11 2019 lúc 14:13

Akai Haruma giúp em bày này với ạ banhqua

Bình luận (0)
 Khách vãng lai đã xóa
PH
8 tháng 11 2019 lúc 14:13

@Nguyễn Việt Lâm em giải mãi ko ra nên đành nhờ anh giúp vậy hehe

Bình luận (0)
 Khách vãng lai đã xóa