Những câu hỏi liên quan
HC
Xem chi tiết
NL
19 tháng 6 2019 lúc 19:24

\(A=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

\(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow A\ge0\)

\(\Rightarrow A_{min}=0\) khi \(x=0\)

Với \(x\ne0\Rightarrow A=\frac{1}{\sqrt{x}+\frac{1}{\sqrt{x}}-1}\le\frac{1}{2\sqrt{\sqrt{x}.\frac{1}{\sqrt{x}}}-1}=\frac{1}{2-1}=1\)

\(\Rightarrow A_{max}=1\) khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\)

Bình luận (0)
TT
Xem chi tiết
KH
16 tháng 6 2020 lúc 16:36

\(a.A=\sqrt{x}-3+\frac{10-x}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}+\frac{10-x}{\sqrt{x}+3}=\frac{x-9+10-x}{\sqrt{x}+3}=\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}-3}{x-9}\)

\(b.\)Ta có: \(\sqrt{x}\ge0\forall x\Rightarrow\sqrt{x}+3\ge3\forall x\Rightarrow\frac{1}{\sqrt{x}+3}\ge\frac{1}{3}\forall x\)

Vậy \(A_{Min}=\frac{1}{3}\Leftrightarrow x=0\)

Bình luận (0)
H24
Xem chi tiết
CM
26 tháng 5 2019 lúc 17:26

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

Bình luận (0)
MQ
26 tháng 5 2019 lúc 18:16

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

Bình luận (0)
H24
Xem chi tiết
NL
2 tháng 3 2021 lúc 21:29

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

Bình luận (0)
DD
Xem chi tiết
LC
Xem chi tiết
H24
2 tháng 8 2020 lúc 7:07

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

Bình luận (0)
 Khách vãng lai đã xóa
LC
2 tháng 8 2020 lúc 14:49

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

Bình luận (0)
 Khách vãng lai đã xóa
LC
2 tháng 8 2020 lúc 14:49

toàn 1 lũ hãm điểm

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
H24
Xem chi tiết
NT
20 tháng 10 2023 lúc 18:47

a: \(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+2\sqrt{x}\left(\sqrt{x}+2\right)-3x-4}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2x+4\sqrt{x}-3x-4}{x-4}\)

\(=\dfrac{2\sqrt{x}-4}{x-4}=\dfrac{2}{\sqrt{x}+2}\)

b: A=1/2

=>\(\sqrt{x}+2=4\)

=>\(\sqrt{x}=2\)

=>x=4(loại)

Bình luận (0)
LS
Xem chi tiết
CD
10 tháng 7 2018 lúc 21:14

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

Bình luận (0)
H24
4 tháng 5 2021 lúc 15:00

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

Bình luận (0)
 Khách vãng lai đã xóa