Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PA
Xem chi tiết
AN
25 tháng 9 2017 lúc 21:33

6x- 26x - 6y2 + 39y - 5xy - 5 = 0

<=> (6x2 - 9xy) + (4xy - 6y2) + ( - 26x + 39y) = 5

<=> (2x - 3y)(3x + 2y - 13) = 5

Tới đây tự làm nốt nhé

Bình luận (0)
DG
Xem chi tiết
H24
27 tháng 8 2020 lúc 9:21

\(2x^2+7y^2+3x-6y=5xy-7\)

\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)

Thấy ngay \(VT>0\)

=> Pt vô nghiệm 

Sure ?

Bình luận (0)
 Khách vãng lai đã xóa
NC
27 tháng 8 2020 lúc 9:38

\(2x^2+7y^2+3x-6y=5xy-7\)

<=> \(16x^2+56y^2+24x-48y=40xy-56\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)

<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)

Mà \(31y^2-18y+47>0\)với mọi y 

=> (1) vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
OO
Xem chi tiết
OO
Xem chi tiết
TK
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
H24
21 tháng 8 2023 lúc 17:57

\(x^2-4x+y^2-6y+15=0\)

\(\Rightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=-2\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

              \(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\forall x;y\)

mà \(\left(x-2\right)^2+\left(y-3\right)^2=-2\)

\(\Rightarrow\)Phương trình vô nghiệm.

Bình luận (0)
H9
21 tháng 8 2023 lúc 17:58

\(x^2-4x+y^2-6y+15=0\)

\(\Leftrightarrow x^2-4x+4+y^2-6y+9+2=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+2=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\)

Mà:  

\(\left(x-2\right)^2\ge0\forall x\)

\(\left(y-3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2\ge2\forall x,y\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2+2=0\) (vô lý)

⇒ Phương trình vô nghiệm:

\(x\in\varnothing\)

Bình luận (0)
NA
Xem chi tiết
AH
1 tháng 10 2020 lúc 18:36

Lời giải:

$x^2-5xy+6y^2=0$

$\Leftrightarrow x^2-2xy-3xy+6y^2=0$

$\Leftrightarrow x(x-2y)-3y(x-2y)=0$

$\Leftrightarrow (x-2y)(x-3y)=0$

$\Rightarrow x=2y$ hoặc $x=3y$

Nếu $x=2y$. Thay vào PT $(2)$ ta được:

$4(2y)^2+2.2y.y+6y-27=0$

$\Leftrightarrow 20y^2+6y-27=0$

$\Leftrightarrow y=\frac{-3+3\sqrt{61}}{20}$

$\Rightarrow x=\frac{-3+3\sqrt{61}}{10}$

Nếu $x=3y$. Thay vào PT $(2)$ ta được:

$4(3y)^2+2.3y.y+6y-27=0$

$\Leftrightarrow 42y^2+6y-27=0$

$\Leftrightarrow y=\frac{-1\pm \sqrt{127}}{14}$

$\Rightarrow x=\frac{-3\pm 3\sqrt{127}}{14}$

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết