Những câu hỏi liên quan
LH
Xem chi tiết
BB
Xem chi tiết
NL
5 tháng 10 2021 lúc 12:05

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

\(\Leftrightarrow x^2+11x-3+2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=4x^2+13x+3\)

\(\Leftrightarrow2\sqrt{\left(x^2+2x\right)\left(9x-3\right)}=3x^2+2x+6\)

\(\Leftrightarrow2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}=3x^2+2x+6\)

\(\Leftrightarrow\left(3x^2-x\right)-2\sqrt{\left(3x+6\right)\left(3x^2-x\right)}+3x+6=0\)

\(\Leftrightarrow\left(\sqrt{3x^2-x}-\sqrt{3x+6}\right)^2=0\)

\(\Leftrightarrow3x^2-x=3x+6\)

\(\Leftrightarrow3x^2-4x-6=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{22}}{3}\\x=\dfrac{2-\sqrt{22}}{3}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
H24
6 tháng 2 2021 lúc 10:47

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
Bình luận (1)
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 9 2019 lúc 22:29

Giải PT

a) \(3\sqrt{9x}+\sqrt{25x}-\sqrt{4x} = 3\)

\(\Leftrightarrow\) \(3.3\sqrt{x} +5\sqrt{x} - 2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(9\sqrt{x}+5\sqrt{x}-2\sqrt{x} = 3 \)

\(\Leftrightarrow\) \(12\sqrt{x} = 3\)

\(\Leftrightarrow\) \(\sqrt{x} = 4 \)

\(\Leftrightarrow\) \(\sqrt{x^2} = 4^2\)

\(\Leftrightarrow\) \(x=16\)

b) \(\sqrt{x^2-2x-1} - 3 =0\)

\(\Leftrightarrow\) \(\sqrt{(x-1)^2} -3=0\)

\(\Leftrightarrow\) \(|x-1|=3\)

* \(x-1=3\)

\(\Leftrightarrow\) \(x=4\)

* \(-x-1=3\)

\(\Leftrightarrow\) \(-x=4\)

\(\Leftrightarrow\) \(x=-4\)

c) \(\sqrt{4x^2+4x+1} - x = 3\)

<=> \(\sqrt{(2x+1)^2} = 3+x\)

<=> \(|2x+1|=3+x\)

* \(2x+1=3+x\)

<=> \(2x-x=3-1\)

<=> \(x=2\)

* \(-2x+1=3+x\)

<=> \(-2x-x = 3-1\)

<=> \(-3x=2\)

<=> \(x=\dfrac{-2}{3}\)

d) \(\sqrt{x-1} = x-3\)

<=> \(\sqrt{(x-1)^2} = (x-3)^2\)

<=> \(|x-1| = x^2-2.x.3+3^2\)

<=> \(|x-1| = x-6x+9\)

<=> \(|x-1| = -5x+9\)

* \(x-1= -5x+9\)

<=> \(x+5x = 9+1\)

<=> \(6x=10\)

<=> \(x= \dfrac{10}{6} =\dfrac{5}{3}\)

* \(-x-1 = -5x+9\)

<=> \(-x+5x = 9+1\)

<=> \(4x = 10\)

<=> \(x= \dfrac{10}{4} = \dfrac{5}{2}\)

Bình luận (2)
PA
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết