\(\sqrt{14-x}+\sqrt{x-12}=x^2-26x+171\)
Giải phương trình: \(\sqrt{x-12}+\sqrt{14-x}=x^2-26x+171\)
mị mới lớp 5 ahihi
ĐK: \(12\le x\le14\)
Sau khi nhân liên hợp chúng ta có được:
\(PT\Leftrightarrow\left(x-13\right)^2\left[1+\frac{\frac{2}{1+\sqrt{\left(x-12\right)\left(14-x\right)}}}{2+\sqrt{x-12}+\sqrt{14-x}}\right]=0\)
\(\Leftrightarrow x=13\)
Khủng khiếp tí nhưng chắc không sao:v
Tìm x \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
Akai HarumaBăng Băng 2k6HISINOMA KINIMADO
Vũ Minh TuấnNguyễn Thanh Hằng
Giải phương trình
\(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
Giải phương trình
\(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{26x+5}=a\ge0\\\sqrt{x^2+30}=b>0\end{matrix}\right.\)
\(\Rightarrow\frac{a^2}{b}+2a=3b\)
\(\Leftrightarrow a^2+2ab-3b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+3b\right)=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow\sqrt{26x+5}=\sqrt{x^2+30}\)
\(\Leftrightarrow x^2-26x+25=0\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)
\(4\sqrt{x+3}+\sqrt{19-3x}=x^2+2x+9\)
\(x\sqrt{3-2x}=3x^26x+4\)
1.
a, Giải pt: \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
b, Giải hệ pt: \(\left\{{}\begin{matrix}x^2+y^2=2\\\left(x+2y\right)\left(2+3y^2+4xy\right)=27\end{matrix}\right.\)
Giải phương trình \(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\)
\(\sqrt{29-x}+\sqrt{x+3}=x^2-26x+177\left(1\right)\)
ĐK -3 =<x =<29
Với mọi a,b >=0 ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Thay \(a=\sqrt{29-x};b=\sqrt{x+3}\)ta có:
\(\sqrt{29-x}+\sqrt{x+3}\le\sqrt{2\left(29-x+x+3\right)}=8\)
\(x^2-26x+177=\left(x-13\right)^2+8\ge8\)
\(\Rightarrow\sqrt{29-x}+\sqrt{x+3}\le x^2-26x+177\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{29-x}=\sqrt{x+3}\\x-13=0\end{cases}\Leftrightarrow x=13}\)
Do đó (1) <=> x=13 (tm)
a) \(\sqrt{3x^2-5x+7}\)+\(\sqrt{3x^2+x+1}\) = 12x-12
b) \(\sqrt{x^2+33}\)+3 = 2x+\(\sqrt{x^2-12}\)
c) 3x-\(8\sqrt{x+14}\) = \(2\sqrt{2x-3}\) - 28
d) \(x^2\)+\(\sqrt{x+7}\) = 7
giải bất phương trình:
\(\sqrt{2x^2+26x+8}\le x+3\sqrt{x}+2\)