Những câu hỏi liên quan
TS
Xem chi tiết
H24
Xem chi tiết
NL
30 tháng 12 2021 lúc 23:46

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

Bình luận (0)
XO
30 tháng 12 2021 lúc 23:51

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

Bình luận (0)
LP
Xem chi tiết
TL
10 tháng 2 2023 lúc 19:23

không biết :))))

Bình luận (0)
AR
Xem chi tiết
VN
28 tháng 3 2019 lúc 20:05

\(A=\sum\sqrt{4x+2\sqrt{x}+1}\)

\(Max_A=+\infty\)

\("="x=y=z=+\infty\)

Bình luận (0)
KN
Xem chi tiết
VP
Xem chi tiết
BT
Xem chi tiết
HL
Xem chi tiết
PD
15 tháng 1 2020 lúc 22:09

Các biểu thức ở trong căn đều đưa được về bình phương
\(\sqrt{4x+2\sqrt{x}+1}=\sqrt{\left(2\sqrt{x}+1\right)^2}=\left|2\sqrt{x}+1\right|=2\sqrt{x}+1\)

Tương tự với hai căn còn lại ta sẽ có biểu thức đề cho tương đương với
\(2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết