Tìm các giá trị của tham số m sao cho hàm số \(y=x+\frac{m}{x-m}\) đồng biến trên khoảng (1;+∞)
Mọi người giúp em câu này với, em cảm ơn !
cho hàm số y = 2x2 - (m - 1 )x +3, m là tham số
a. tìm khoảng đồng biến, nghịch biến của hàm số
b/ tìm các giái trị của m để hàm số đồng biến trên khoảng 1;+∞
c. tìm m để hàm số nghịch biến trên khoàng -4;8
d. tìm m để giá trị nhỏ nhất của hàm số là 9
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên khoảng (1;3)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = tan x - 2 tan x - m đồng biến trên khoảng 0 ; π 4 ?
A. 1≤ m < 2.
B. m≤ 0 .
C. m> 2.
D. Cả A và B đúng
+) Điều kiện tanx ≠ m
Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)
+) đạo hàm:
y ' = ( tan 2 x + 1 ) ( 2 - m ) ( tan x - m ) 2 = 2 - m cos 2 x . ( tan x - m ) 2
+) Ta thấy:
1 cos 2 x . ( tan x - m ) 2 > 0 ; ∀ m ∉ ( 0 ; 1 )
+) Để hàm số đồng biến trên (0; π/4)
⇔ y ' > 0 m ∉ ( 0 ; 1 ) ⇔ - m + 2 > 0 m ≤ 0 ; m ≥ 1 ⇔ m ≤ 0 h o ặ c 1 ≤ m < 2
Chọn D.
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
3. Cho hàm số y = x^2- m^2+2m +1 /x -m . Tìm tập hợp các giá trị của tham số m để hàm số đồng biến trên khoảng xác định của nó?
\(y=\dfrac{x^2-m^2+2m+1}{x-m}\) đúng không nhỉ?
\(y'=\dfrac{x^2-2mx+m^2-2m-1}{\left(x-m\right)^2}\)
Hàm đồng biến trên các khoảng xác định khi và chỉ khi:
\(x^2-2mx+m^2-2m-1\ge0\) ; \(\forall x\)
\(\Leftrightarrow\Delta'=m^2-\left(m^2-2m-1\right)\le0\)
\(\Leftrightarrow m\le-\dfrac{1}{2}\)
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x − 4 x − m đồng biến trên khoảng 1 ; + ∞
A. m ∈ − 2 ; 2
B. m ∈ 0 ; 2 .
C. m ∈ − 2 ; 0 .
D. m ∈ − 2 ; 1
Đáp án D
Điều kiện: x ≠ m .
Đạo hàm y ' = − m 2 + 4 x − m 2 ;
Hàm số đồng biến trên khoảng 1 ; + ∞ ⇔ y ' > 0, ∀ x ∈ 1 ; + ∞ x ≠ m
⇔ − m 2 + 4 > 0, ∀ x ∈ 1 ; + ∞ x ≠ m ⇔ − 2 < m < 2 m ∉ 1 ; + ∞ ⇔ m ∈ − 2 ; 1
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x 4 - 2 ( m - 1 ) x 2 + m - 2 đồng biến trên khoảng (1;3).
A. .
B. .
C. .
D. .
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x 4 - 2 ( m - 1 ) x 2 + m - 2 đồng biến trên khoảng (1;3)?
A. m ∈ [ - 5 ; 2 )
B. m ∈ (- ∞ ;2]
C. m ∈ ( 2 ; + ∞ )
D. m ∈ ( - ∞ ; - 5 )
Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x 2 + 3 - m ( x + 1 ) đồng biến trên khoảng ( - ∞ ; + ∞ )
A. [ 1 ; + ∞ )
B. [ - 1 ; 1 ]
C. ( - ∞ ; - 1 ]
D. ( - ∞ ; 1 )
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x 4 - 2 n - 1 x 2 + m - 2 đồng biến trên khoảng (1; 3)?
A. m ∈ [ - 5 ; 2 )
B. m ∈ ( - ∞ ; 2 ]
C. m ∈ 2 ; + ∞
D. m ∈ - ∞ ; - 5
Chọn B.
Tập xác định D = R.
Dựa vào bảng biến thiên, kết luận: m ≤ min g(x) ⇔ m ≤ 2