Giải pt sau: \(\sqrt{x-5}+\sqrt{5-x}=1\)
GIẢI CÁC PT SAU:
\(\sqrt{x+1}+\sqrt{x-1}=4\)
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
giải các pt sau
\(\sqrt{x+3}=5-\sqrt{x-2}\)
\(\sqrt{x^2-x-1}=1-x\)
a. ĐKXĐ \(x\ge2\)
\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)
\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)
\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
b.
\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow\) Pt vô nghiệm
\(a.\sqrt{x+3}=5-\sqrt{x-2}\)
\(\sqrt{x+3}+\sqrt{x-2}=5\)
\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)
\(x+3+x-2=25\)
\(2x+1=25\)
\(x=12\)
\(b.\sqrt{x^2-x-1}=1-x\)
\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)
\(x^2-x-1=1-2x+x^2\)
\(x^2-x-1-1+2x-x^2=0\)
\(x-2=0\)
\(x=2\)
giải pt sau: x + (x+1)\(\sqrt{x+3}\)=5
ĐKXĐ: x+3>=0
=>x>=-3
\(x+\left(x+1\right)\sqrt{x+3}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x+1\right)^2}=5\)
=>\(x+\sqrt{\left(x+3\right)\left(x^2+2x+1\right)}=5\)
=>\(x+\sqrt{x^3+2x^2+x+3x^2+6x+3}=5\)
=>\(x+\sqrt{x^3+5x^2+7x+3}=5\)
=>\(x-1+\sqrt{x^3+5x^2+7x+3}-4=0\)
=>\(\left(x-1\right)+\dfrac{x^3+5x^2+7x+3-16}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{x^3-x^2+6x^2-6x+13x-13}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)+\dfrac{\left(x-1\right)\left(x^2+6x+13\right)}{\sqrt{x^3+5x^2+7x+3}+4}=0\)
=>\(\left(x-1\right)\left(1+\dfrac{x^2+6x+13}{\sqrt{x^3+5x^2+7x+3}+4}\right)=0\)
=>x-1=0
=>x=1(nhận)
Giải các pt sau:
a) \(\sqrt{\dfrac{x+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
Giải các PT sau: \(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\)
\(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\left(đk:x\ge-2\right)\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2}-2\right)^2}=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|=\left|\sqrt{5}-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}-2=\sqrt{5}-2\\\sqrt{x+2}-2=2-\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=5\\x+2=21-8\sqrt{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=19-8\sqrt{5}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;19-8\sqrt{5}\right\}\)
giải các pt sau:
1. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
2. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
GIẢI PT SAU:
\(\sqrt{3x-3}-\sqrt{5-x}=\sqrt{2x-4}\)
\(x^2-6x+9=4\sqrt{x^2-6x+6}\)
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
Giải pt sau
a) \(\sqrt{x^2-2x+5}=x^2-2x-1\)
b)\(\sqrt{4x^2+9x+5}=\sqrt{x^2-1}+\sqrt{2x^2+x-1}\)
Giải PT sau: \(\left(2-\sqrt{5}\right)\)x2 + \(\left(6-\sqrt{5}\right)\)x \(-\) \(8\) + \(2\sqrt{5}\) = 0
\(\left(2-\sqrt{5}\right)x^2+\left(6-\sqrt{5}\right)x-8+2\sqrt{5}=0\)
\(\Leftrightarrow\left(2-\sqrt{5}\right)x^2-\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)x-(8-2\sqrt{5})=0\)
\(\Leftrightarrow\left(2-\sqrt{5}\right)x\left(x-1\right)+\left(8-2\sqrt{5}\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(2-\sqrt{5}\right)x=-8+2\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+2\sqrt{5}}{2-\sqrt{5}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6+4\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{1;6+4\sqrt{5}\right\}\)