Những câu hỏi liên quan
NN
Xem chi tiết
NT
22 tháng 2 2023 lúc 19:41

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bình luận (0)
ND
Xem chi tiết
NT
22 tháng 2 2023 lúc 19:51

a:

Sửa đề: \(\dfrac{n+1}{2n+3}\)

Gọi d=ƯCLN(n+1;2n+3)

=>2n+2-2n-3 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

b: Gọi d=ƯCLN(4n+8;2n+3)

=>4n+8-4n-6 chia hết cho d

=>2 chia hêt cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bình luận (0)
AB
Xem chi tiết
LD
Xem chi tiết
NT
9 tháng 4 2021 lúc 16:11

b) Gọi \(d\inƯC\left(3n+2;2n+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(3n+2;2n+1\right)=1\)

hay \(B=\dfrac{3n+2}{2n+1}\) là phân số tối giản (đpcm)

Bình luận (0)
H24
9 tháng 4 2021 lúc 12:49

Gọi ƯCLN(n-1,n-2)=d

n-1⋮d 

n-2⋮d

(n-1)-(n-2)⋮d

1⋮d ⇒ƯCLN(n-1,n-2)=1

Vậy n-1/n-2 là ps tối giản

Bình luận (0)

Giải:

A=n-1/n-2

Gọi ƯCLN(n-1;n-2)=d

=>n-1:d

    n-2:d

=>(n-1)-(n-2):d

       -1:d

=>d=1

=>ƯCLN(n-1;n-2)=1

Vậy n-1/n-2 là phân số tối giản.

B=3n+2/2n+1

Gọi ƯCLN(3n+2;2n+1)=d

=>3n+2:d                  =>2.(3n+2):d          =>6n+4:d

    2n+1:d                      3.(2n+1):d               6n+3:d

=>(6n+4)-(6n+3):d

        1:d

=>d=1

Vậy 3n+2/2n+1 là phân số tối giản.

Câu C bạn tự làm nhé!

Chúc bạn may mắn!

Bình luận (0)
PT
Xem chi tiết
MA
5 tháng 8 2016 lúc 9:29

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

Bình luận (0)
DD
5 tháng 8 2016 lúc 9:33

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

Bình luận (0)
NT
Xem chi tiết
NH
12 tháng 7 2017 lúc 12:33

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n

Bình luận (0)
MS
12 tháng 7 2017 lúc 13:02

Gọi \(d\)\(UCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)

Bình luận (0)
H24
Xem chi tiết
NL
1 tháng 3 2023 lúc 17:32

a.

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

Do \(2n+3\) luôn lẻ nên d phải là số lẻ

Ta có \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)  \(\Rightarrow4n+8-2\left(2n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Mà d luôn lẻ \(\Rightarrow d=1\)

Vậy 2n+3 bà 4n+8 nguyên tố cùng nhau hay \(\dfrac{2n+3}{4n+8}\) tối giản

b. Tương tự gọi \(d=ƯC\left(3n+2;5n+3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\) \(\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow3n+2\) và 5n+3 nguyên tố cùng nhau hay \(\dfrac{3n+2}{5n+3}\) tối giản

Bình luận (0)
HL
Xem chi tiết
XO
17 tháng 7 2020 lúc 8:28

c) Gọi ƯCLN(4n + 3;5n+4) = d

=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau 

=> \(\frac{4n+3}{5n+4}\)là phân số tối giản

d) Gọi ƯCLN(n+1;2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

f)  Gọi ƯCLN(3n + 2;5n + 3) = d

=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{3n+2}{5n+3}\)là phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
XO
17 tháng 7 2020 lúc 8:16

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> \(\frac{3n+3}{9n+8}\)phân số tối giản

Bình luận (0)
 Khách vãng lai đã xóa
QN
Xem chi tiết
TL
6 tháng 6 2020 lúc 10:24

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

Bình luận (0)
 Khách vãng lai đã xóa
TL
6 tháng 6 2020 lúc 10:28

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

Bình luận (0)
 Khách vãng lai đã xóa